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Abstract. We find conditions under which all solutions of stochastic alge-

braic-differential equations given in terms of forward Nelson’s mean deriva-

tives, exist for all t ∈ [0,∞). We suppose that the matrix pencil of equation
satisfies the rank-degree condition.

Introduction

The notion of mean derivatives (forward, backward, symmetric and antisym-
metric) was introduced by E. Nelson in [1, 2, 3]. In [4] (see also [5] where all
preliminaries about mean derivatives are given) an additional mean derivative,
called quadratic, was introduced so that from some Nelson’s mean derivative and
the quadratic one it became in principle possible to find a stochastic process having
those derivatives.

In this paper we investigate the completeness property of the flows generated
by the stochastic algebraic-differential equations given in terms of forward Nel-
son’s mean derivatives, i.e., we find conditions, under which all solutions of those
equations exist for all t ∈ [0,∞). Previously, in [6], this problem was investigated
for equations given in terms of symmetric mean derivatives. The case of forward
mean derivatives requires absolutely different methods of investigation. We sup-
pose that the matrix pencil of equation satisfies the rank-degree condition. This
assumption makes the investigation more successful.

The structure of the paper is as follows. In Section 1 we give some facts from the
theory of matrices, necessary for the description of algebraic-differential equations.
Section 2 is devoted to preliminaries of the theory of mean derivatives. In Section
we present the main results of the paper.
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1. Some facts from the theory of matrices

Everywhere below we deal with the n dimensional linear space Rn, vectors from
Rn and n× n matrices.

Consider two n× n constant matrices A and B where A is degenerate while B
is non-degenerate. The expression λA + B, where λ is real parameter, is called
the matrix pencil. The polynomial θ(λ) = det(λA+B) is called the characteristic
polynomial of the pencil λA+B. The pencil is called regular, if its characteristic
polynomial is not identically equal to zero.

If the matrix pencil λA+B is regular, there exist to non-degenerate linear op-
erators P (acts from the left side) and Q (acts from the right side) that reduce the
matrices A and B to the canonical quasi-diagonal form (see [7]). In the canonical
quasi-diagonal form, under appropriate numeration of basis vectors, in the matrix
PAQ first along diagonal there is the d × d unit matrix and then along diagonal
there are the Jordan boxes with zeros on diagonal. In PBQ in the lines corre-
sponding to Jordan boxes, there is the unit matrix, and in the lines corresponding
to the unit matrix there is a certain non-degenerate matrix J . Thus

P (λA(t) +B(t))Q = λ

(
Id 0
0 N(t)

)
+

(
J 0
0 In−d

)
, (1.1)

The non-degenerate pencil satisfies the rank-degree condition if

rank(A(t)) = deg(det(λA(t) +B(t))). (1.2)

If the pencil satisfies the rank-degree condition, formula (1.1) takes the form

P (t)(λA(t) +B(t))Q(t) = λ

(
Id 0
0 0

)
+

(
J 0
0 In−d

)
. (1.3)

where J is non-degenerate since B is non-degenerate.
Consider a symmetric positive definite (i.e. non-degenerate) d× d matrix Ξ(t).

Lemma 1.1. ([4, Lemma 2.2], see also [5]) There exists a d× d matrix A(t) such
that Ξ(t) = AA∗ where A∗ is the transposed matrix A.

2. Mean derivatives

In this section we briefly describe preliminary facts about mean derivatives. See
details in [1, 2, 3, 5].

Consider a stochastic process ξ(t) in Rn, t ∈ [0, T ], given on a certain probability
space (Ω,F ,P) and such that ξ(t) is an L1 random element for all t. It is known
that such a process determines 3 families of σ-subalgebras of the σ-algebra F :

(i) ”the past” Pξ
t generated by preimages of Borel sets from Rn under all map-

pings ξ(s) : Ω → Rn for 0 ≤ s ≤ t;

(ii) ”the future” Fξ
t generated by preimages of Borel sets from Rn under all

mappings ξ(s) : Ω → Rn for t ≤ s ≤ T ;

(iii) ”the present” (”now”) N ξ
t generated by preimages of Borel sets from Rn

under the mapping ξ(t) : Ω → Rn.
All the above families we suppose to be complete, i.e., containing all sets of

probability zero.
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For the sake of convenience we denote by Eξ
t the conditional expectation E(·|N ξ

t )

with respect to the ”present” N ξ
t for ξ(t).

Following [1, 2, 3], introduce the following notions of forward mean derivatives.

Definition 2.1. The forward mean derivative Dξ(t) of ξ(t) at the time instant t
is an L1 random element of the form

Dξ(t) = lim
△t→+0

Eξ
t (

ξ(t+△t)− ξ(t)

△t
), (2.1)

where the limit is supposed to exist in L1(Ω,F ,P) and △t → +0 means that △t
tends to 0 and △t > 0.

Remark 2.2. If ξ(t) is a Markov process then evidently Eξ
t can be replaced by

E(·|Pξ
t ) in (2.1) and by E(·|Fξ

t ) in (??). In initial Nelson’s works there were
two versions of definition of mean derivatives: as in our Definition ?? and with
conditional expectations with respect to ”past” and ”future” as above that coincide
for Markov processes. We shall not suppose ξ(t) to be a Markov process and give
the definition with conditional expectation with respect to ”present” taking into
account the physical principle of locality: the derivative should be determined by
the present state of the system, not by its past or future.

One can easily derive that for an Ito process ξ(t) =
∫ t

0
a(s)ds +

∫ t

0
A(s)dw(s)

its forward mean derivative takes the form Dξ(t) = a(t) since
∫ t

0
A(s)dw(s) is a

martingale and so D
∫ t

0
A(s)dw(s) = 0.

Following [4] (see also [5]) we introduce the differential operator D2 that differ-
entiates an L1 random process ξ(t), t ∈ [0, T ] according to the rule

D2ξ(t) = lim
△t→+0

Eξ
t (

(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t
), (2.2)

where (ξ(t + △t) − ξ(t)) is considered as a column vector (vector in Rn), (ξ(t +
△t) − ξ(t))∗ is a row vector (transposed, or conjugate vector) and the limit is
supposed to exists in L1(Ω,F ,P). We emphasize that the matrix product of a
column on the left and a row on the right is a matrix. It is shown that D2ξ(t)
takes values in S̄+(n), the set of symmetric semi-positive definite matrices. We
call D2 the quadratic mean derivative.

One can easily derive that for an Ito process ξ(t) =
∫ t

0
a(s)ds +

∫ t

0
A(s)dw(s)

its quadratic mean derivative takes the form D2ξ(t) = AA∗ (see [4] and also [5]).

Remark 2.3. From the properties of conditional expectation (see, e.g., [8]) it
follows that there exist Borel mappings a(t, x), a∗(t, x) and α(t, x) from R × Rn

to Rn and to S̄+, respectively, such that Dξ(t) = a(t, ξ(t)), D∗ξ(t) = a∗(t, ξ(t))
and D2ξ(t) = α(t, ξ(t)). Following [8] we call a(t, x), a∗(t, x) and α(t, x) the
regressions.

3. The main result

Let Ξ(t), t ∈ [0,∞) be a continuous symmetric positive definite (i.e. non-
degenerate) d × d matrix. By Lemma 1.1 there exists d × d matrix A such that
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Ξ(t) = A(t)A∗(t). Construct the n× n matrix Θ of the form

Θ =

(
Ξ(t) 0
0 0

)
(3.1)

We investigate the following stochastic algebraic-differential system{
LDη(t) = Mη(t) + f(t)
D2η(t) = Θ

(3.2)

where L and M are from formula (1.3) and f(t) is a smooth deterministic vector
in Rn. Taking into account the struicture of matrices L and M we see that system
(3.2) is decomposed into to independent systems — the one in upper left corner
with the unit matrix in L and matrix J in M and the system in right bottom
corner with 0 in L and and the unit matrix in M . Let the unit matrix in L and
the matrix J in M be d × d matrices, then the init matrix in the right bottom
corner in M is a (n− d)× (n− d) matrix.

The system in upper left corner takes the form{
Dη(1) = Jη(1) + f(1)
D2η(1) = Ξ

(3.3)

wshere η(1) and f(1) are constructed from the first d coordinates of the vectors η(t)
and f(t), respectively.

The bloc in the right bottom corner takes the form{
0 = η(2) + f(2)
D2η(2) = 0

(3.4)

where η(2) and f(2) are constructed from the last n− d coordinates of vectors η(t)
and f(t), respectively.

It is evident that solution of (3.2) exists for t ∈ [0,∞) if and only if the same is
valid for solutions of (3.3) and of (3.4). We will start with (3.4).

Theorem 3.1. The process η(2), the solution of (3.4), is deterministic and exists
for all t ∈ [0,∞).

Proof. Since D2η(2) = 0, the process η(2) is deterministic. From the first line of
(3.4) we obtain that η(2) = −f(2)(t) that exists for t ∈ [0,∞) be definition. □

Hence the completeness of the flow generated by (3.2) in Rn depends only on
the completeness of the flow generated by (3.3) in Rd.

Now we turn to (3.3). Here we will find several conditions under which the flow,
generated by (3.3), is complete, i.e., the solution of (3.3) exist for t ∈ [0,∞).

Definition 3.2. The flow ξ(s) is complete on [0, T ] if every orbit ξt,m(s) a.s.
exists for any couple (t, x) (with 0 ≤ t ≤ T ) and for all s ∈ [t, T ]. The flow ξ(s) is
complete if it is complete on any interval [0, T ] ⊂ R.

The structure of equation (3.3) means that its solution satisfies the following
stochastic differential equation in Ito form

η(1)(t) =

∫ t

0

Jη(1)(s)ds+

∫ t

0

f(1)(s)ds+

∫ t

0

Adw(s) (3.5)

where A is such that AA∗ = Ξ (see above).
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Hence the backward equation takes the form

η̂(t) = −
∫ t

0

Jη̂(1)(s)ds−
∫ t

0

f(1)(s)ds+

∫ t

0

tr A′(A)ds−
∫ t

0

Adw(s) (3.6)

Denote by A and by Â the generator of flow generated by equation (3.5) and
the backward generator, respectively.

Definition 3.3. A function from a topological space X to the real line R is called
proper if the preimage of every relatively compact set in R is relatively compact
in X.

Theorem 3.4. Let there exist a smooth proper function φ on Rn such that
A(t, x)φ < C for some C > 0 at all t ∈ [0,+∞) and x ∈ Rn where A(t, x) is the
generator of flow ξ(s) . Then the flow ξ(t, s) is complete.

Theorem 3.4 is a simple version of rather general sufficient condition [9, Theorem
IX. 6A].

Corollary 3.5. On R × Rn consider the flow ξ̃(s) = (s, ξ(s)) with the generator

Ã(t, x) = ∂
∂t + A(t, x). Let on R × Rn there exist a proper function φ̃ such that

Ã(t, x)φ̃ < C for some C > 0 at all t ∈ [0,+∞) and x ∈ Rn. Then the flow ξ(s)
on Rn is complete.

Definition 3.6. We say that the flow ξ(s) is continuous at infinity if for any finite
interval [0, T ] ⊂ R, any 0 ≤ t ≤ T and any compact K ⊂ M the equality

lim
x→∞

P(ξt,x(T )) ∈ K) = 0 (3.7)

holds where ξt,x(s) is the orbit of flow ξ(s) such that ξt,x(t) = x.

Let the flow ξ(s) generated by equation (3.5) be a flow of diffeomorphisms, i.e.,
the backward flow exists.

Theorem 3.7. The forward flow ξ(s) and the backward flow ξ̂(s) generated by
equation (3.3), are simultaneously both complete and continuous at infinity if and
only if on R × Rn there exist positive smooth proper functions u(t, x) and û(t, x)
such that the inequalities(

∂

∂t
+A

)
u < C and

(
− ∂

∂t
+ Â

)
û < Ĉ

hold for certain positive constants C and Ĉ.
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