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VARIATIONAL DIRICHLET PROBLEM FOR ELLIPTIC
OPERATORS IN THE WHOLE SPACE WITH
UNCOORDINATED DEGENERACY OF COEFFICIENTS

SULAIMON ISKHOKOV AND BAKHTOVAR RAKHMONOV

ABSTRACT. In paper we investigate solvability of the variational Dirichlet
problem for a class of elliptic differential operators in the whole space. The
sesquilinear form associated with the operator under study is represented
as a finite sum of auxiliary sesquilinear forms and the concept of jjleading
form;; is introduced. Depending on the behavior of the coefficients of the
leading forms, the main weighted space of differentiable functions of many real
variables in the entire space is introduced. The solvability of the variational
Dirichlet problem is studied in this space.

1. Introduction

The solvability of the variational Dirichlet problem for degenerate elliptic opera-
tors of higher order in the domain € of n-dimensional Euclidean space R™ is well
studied in the case of bounded domain {2 and the coercivity of the corresponding
sesquilinear form ( see [1] - [8] and the bibliography therein). The case when the
differential operators under study are generated using non-coercive sesquilinear
forms is associated with many technical difficulties and was first considered in [9].
This case was later studied in [10] - [17]. The method developed in these papers
is essentially based on the boundedness of the domain €2 in which the differential
operator under study is specified. The improvement of this method in [16], [18]
made it possible to study differential operators defined in unbounded domains that
are very close to bounded domains (a limit-cylindrical domain with zero diameter
at infinity).

In the authors’ papers [19] - [21] we studied the solvability of the variational
Dirichlet problem for elliptic operators in the whole space R™, the corresponding
forms of which may not satisfy the coercivity condition and whose coefficients have
coordinated power-law degeneracy at infinity. In this case, the main solution space
is determined using the degree of degeneracy of the leading coefficients.

Here we consider in detail the case of uncoordinated degeneracy of the coeffici-
ents of the operator under study. In this case, we introduce the concept of ”leading
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forms” and show that the main space of solutions to the Dirichlet problem is deter-
mined only by the degrees of degeneracy of the coefficients of leading forms. The
coeflicients of non-leading forms do not affect the definition of the main solution
space.

2. Statement of the main result

Let R™ be the n-dimensional Euclidean space of points = (x1, x2, ..., )
and let k = (k1, ko, -+ , k) — multi-index and |k| = k1 + ko + - - - + k,, — length of
multi-index k. Let us denote by u*)(z) the derivative of the function u(z) of the
multiindex k, generalized in the sense of S.L. Sobolev. Let r — a natural number
and J — some subset of the set {0, 1,...,r}, with r € J. Let d(z) = (1+|z[?)~1/?
and o, j € J, — real numbers. Consider the differential operator

1
L= Y (0 (d@) @ @) (2.1)
|k|=|l|=5€J
which is understood in the sense of the theory of distributions on R™. It is assumed
that the coefficients ay;(z), © € R™, are bounded complex-valued functions.

Definition 1. The degeneracy of the coefficients of an operator (2.1) is said
to be coordinated if there is a number « such that a; =a —j+r forall j € J.
Otherwise it is called uncoordinated.

This work is devoted to studying the solvability of the variational Dirichlet
problem for a differential operator (2.1) in the case of uncoordinated degeneracy
of its coefficients. The formulation of the variational Dirichlet problem for the
operator (2.1) is associated with the following integro-differential sesquilinear form

Blu,v) = Y / & (@)ap (2)u™ ()0 () dz. (2.2)

|k|=[l=j€J

Here and below, all integrals are taken over the whole space R™ and it is assumed
that the form (2.2), in the general case, may not satisfy the coercivity condition,
which is understood in the sense of Definition 2.0.1 of the paper [7]: if Hy — is
a Hilbert space with scalar product (-,-)g and norm || - ||o, H+ — another Hilbert
space with norm ||-||+, densely embedded in Hy, then the sesquilinear form Plu, v]
defined in H, is called H,-coercive with respect to Hy if there are numbers o €
R, 59 > 0 such that
Re Plu, u] + uollul2 > b lul2
for all w € H,.
We represent the form (2.2) as

Blu ZB u,v], where Bj[u, v] Z /d%‘J x)ag(x (k)( )v(l)( )dx

jed |k|=t=4

and introduce the following definition:

Definition 2. The form B,[u, v] is called leading form. In what follows,
for convenience, we denote r by j; and define other leading forms by induction.
Let the leading forms By, [u, v], ..., Bj, _,|u, v] already be specified and let j,,, be

the greatest number of set J, less than j,,—1, for which the inequality «;,, + jm <
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ming <p<m—1(cy, +Jjn). holds. Then the form B;,, [u, v] will also be called leading
form. If there is no such j,, then only the forms Bj, [u, v], ..., Bj,,_,[u, v] are
called leading form, and m — 1 will be denoted by m.

Before formulating the variational Dirichlet problem for the operator (2.1), we
define the main functional space in which the solution to this problem is sought.
For j € J we denote by Vj ,(R™) the space of functions u(z) defined in the whole
space R™ which have all derlvatlves of the order j generalized in the sense of S.L.
Sobolev with finite norm

1/2
6 Vi, @ = 3 [ @)+ [ 0 @)u(o)Pda
|k|=3j
Let § = miny<p<m{ej, + jn} and Lo s(R™) be a Hilbert space with inner
product

(u, v)s = /d%(x)u(m)@dm. (2.3)

Let || f; Lo, s(R™)|| denote the norm of the space Lo s(R™) generated by the scalar
product (2.3).
We introduce the space H of complex-valued functions u(z), x € R™, with

finite norm
1/2
flus Hy |l = { } :

From the property of the space VQJ o (R”) (see, for example, [7]) it follows that the
set C§°(R™) is dense in the space H and || f; Lo s(R™)| < |Ju; Hy|| VYu e Hy.

The symbol H_ denotes the completion of the space Lo 5(R™) according to the
norm

th n

2(1]

1(f; w)sl
[1f; H-|| = sup
P s B
where the supremum is taken over all v € Hy such that ||u; Hy || = 1. Elements

from H_ are identified with the corresponding antilinear continuous functionals
over H;. The action of the functional F € H_ on the function v € Hy will be
denoted by the symbol (F, v).
Now let us formulate the variational Dirichlet problem for the operator (2.1).
Problem D). For a given functional F' € H_ it is required to find a solution
u(zx) to the equation

Blu, v] + A(u, v)s =< F,v> Yve CZ(R"),

which belongs to the space H .
Before formulating the main result of our paper on the solvability of the problem
D), for each h = 1, m we introduce the function

Ap(z, () = Z ar ()¢,
[k|=[l|=jn
where z € R™ and ( = {Ck}lkI:jh — an a set of complex numbers.

Further we will assume that the function argz takes its values on the interval
(=, 7.
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Theorem. Let for each h € {1, ..., m} there exist a number 1, € (0, 7) and a
nonzero complex-valued everywhere continuous function vy(x), x € R™, such that
forallxz e R, ( = {Ck}|k|<r C C the following inequalities hold

larg An(w, Q) < n, (2.4)
> 1G> < MRe {yn(2) An(z, O} (2.5)

|k|=r
Here M is some positive number.
Let for any number v > 0 there exist R, > 0 such that |yn(x) — v (y)| < v for
any h =1, m and all z, y € R™ such that |x| > Ry, |y| > R,.
Then there is a number Ao > 0 such that if A > Ao, then for any given functional
F € H_ the problem Dy has a unique solution and at the same time a following
inequality holds

[[us Hy || < Mo [|F5 H-|[, (2.6)

where the number My > 0 does not depend on A € [Ag, +00) and on the functional
F.

3. Proof of the main theorem

Without loss of generality, we can assume that the numbers ¢}, and the functions
~n(x) under conditions (2.4), (2.5) do not depend on h. Therefore, without loss of
generality, we will further assume that

Yr=12 ==, =1, @) =)= =y =) (3.1)
Lemma 1 (See [21, Lemma 3.1]). Let the function vy(x), x € R™, be the same as
in the previous section, and let v be a sufficiently small positive number. Then there
are non-negative functions om(z) € C§(R™), npm(z) € CER™), m =1,2, ...,
such that:
a) the system of functions {cp?n(x)}:zl forms a partition of the unit in the
space R™ with finite multiplicity, that is

Z ©?(r) =1,z €R",
m=1

and if xm(x) is the characteristic function of the set supp p.,, then there is a finite
number A,,, depending only on n, such that

1< Z Xm(z) <A,  for allx € R™;
m=1

b) the function n,(x) vanishes to one in some neighborhood of the set
supp m(x) and 0 < n,, <1 for all x € R™;

¢) the derivatives of the functions om(x), nm(x), m = 1,2, ..., satisfy the
following inequalities

PW @) < Crd(@),  |nP@)| < crdM@), K <,

positive numbers C, Co do not depend on m and r;
d) |v(x) —=y(y)| <v for all x, y € suppnm (m =1, 2, ...).

10
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Let v be a sufficiently small positive number, and let ¢, (z), nm(z) (m =
1,23, ...) — the same non-negative functions as in Lemma 1. In each set supp ¢,
(m=1,2,3,...) we fix the point z,, and consider the sesquilinear form

B(O [w, v] ZBm jlusv —I—)\/d% v(x)dz, (3.2)
s
where
B el = Y [ @@, @ @O
|k|=|ll=J
Ao, () = (1= 1 (2)) V(@ )@t () + o (2) () g () (3.3)
for |k| = || = jn, h =1, p, and

0
Qi (%) = (1= 1 (2)) g2 () + 7 (2) a1 ()
for |k| =|l| =is, s =1, q.
Further, for convenience of writing, we present the form (3.2) as

P
B(O) [u,v] ZBm [, v +ZBm i (3.4)

From the boundedness of the coefficients ay;(x), |k|, || < r, it follows that the

coefficients agfn(x) are bounded. Therefore, applying the Cauchy-Bunyakovsky

inequality for leading forms we have

1B, 0] < Mollus Vs,

RY)-llos Vi, (R < Mo [lus He || [|o; Bl (3.5)

25005,

Now consider the form B’I(T(L))i [, v], which is not the leading form. According to
the Definition 2, j, is an index of the highest form if j, < j,—1 and a;, + j, <
mini<p<p—1 (e, + jn) . Therefore, for any index of the non-leading form 4, there

is an index of the leading form jj such that
Jn > ts, O, +1g > Qi + Jn. (3.6)

Taking this into account, by virtue of the embedding theorem for the spaces
V3, o (R™) (see, for example, [21, Theorem 2.1] ), we have

s V3", (R™) (")

- v

2, a5, +in—ts

Since 0 < d(z) < 1,Vz € R", then by inequality (3.6) we have

|«

Hence, by virtue of the definition of the space H, it follows that

VvQZgoz +jh T (Rn U3 ‘/2“04 (Rn)

‘u; Vi, (R H <M, H Vi, R < My Jlu; B
Therefore
’Bm i lu v]) < Molu; Vaz,, (R™)|- [lvs Vaz,, (R™)|| < My [|u; Hy || [|o; Hy |l . (3.7)

11
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Note also the obvious inequality

‘ / d? (x v(z)dz

Now applying the inequalities (3.5), (3.7), (3.8), from (3.4) we have

< flus B [ flo; Hy ] (3-8)

0
O[] < (s + 1) s HL | s B | (3.9)

for all u,v € Hy.
From condition (2.5) it follows that

Re ¢ v(xm) Z ar(2m)GiG p > ¢ Z |Gk,

[k|=|l|=jn [kl=3n

Re ¢ v(2) Z ar(2)GiGj ¢ > ¢ Z [
|k|=[l=jn |k|=3n
forallm =1, 2, 3, ..., x € R™ and for any set of complex numbers { = {Ck}lkléf’ C
C. Due to these inequalities, it follows from (3.3) that

Red > ad @G pze > (Gl
[k|=[t=jn |k|=3n

forallm=1,2,3,...,z€R" (= {Ck}lklzjh c C.

Substituting ¢ = d%n (z)u® (z) into this inequality after integrating over R™
we obtain

Re B, [uu] > Cy 3 /dwu u“f)( )‘ dz. (3.10)
[k|=jn

From this inequality and from the definition of the norm of the space V3., (R") it
follows that

2 . 2
Re B, [y ] + A [|us Lo, ay, 150 (R = Co |us V2, (R?) (3.11)

m, jn

for all u € C§°(R™).
Further, in the process of proving the main theorem, we will repeatedly use the
inequality

|

which occurs due to the inequality d°(x) > d%¥7(z), j € J, = € R™.
Hence, due to the inequality (3.11) and the definition of the space H, it follows
that

4+ (RY)|| < My [Ju; Ly s(R™)|| Vi€ J, ue Ce°(R™),

Re ZBm o] + X s Lo s (R > b llus Ho |, u € CE(R™),

where \j, ¢ are some positive numbers.

12
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Now consider the non-leading form B

. i. s v]. Due to the boundedness of the
coefficients of this form, we have

B ]| < A ®") (3.12)

u; Ly ,, (R™)

Hv L

2;

Next, note that for any index of the non-leading form i, there is an index of the
leading form j;, such that the inequalities are satisfied j, > @5, o, +is > o, +Jn-

On the other hand, from [23, Lemma 2.2], in particular, it follows that for any
7> 0 and all u € C§°(R™) the following inequality is valid

S -t D 1, ()] <
=

< rllu; L, (R +cor™ |

u; Lo, aj, +in R")

where p = is/(jn — is). From here, due to the inequality a;, > —is + o, + jn, it
follows that

o5 L5, R < 7l L, @I+ com ™ s Loy, 400 ®RY)|[ - (313)
where p — finite positive number.
Applying inequality (3.13), from (3.12) we have
, 2
S T ul| < P2l L, (R™)I2 + cor 2 [|us Lo, 40 (RY) (3.14)

Next, using inequalities (3.10), (3.14), we obtain

Re B, [u, u] + ReB”

m, jh m,ig

[u, u] > ReB(O) [u, u] ‘B

m, jhn

u]’z

m,is u
2
> (Co — 72) ||us; LY %h(Rn)HQ —coT Hu, L2,ajh+jh(R")H .
Then, choosing a suitable value for the parameter 7, we find
2
> Cy

2
0 0 n Ih n
Re B\, [u,u] + ReB(Y; [u,u] —&—)\;LHU; L2, oy, +j,(R") w V', (R")

Further, taking into account the definitions of the forms Bfrg?jh [u, u], Bfn)l [w, u]
and the space H, we obtain the inequality

ReB [u w > lus Hy >, A= M, m=1,2,3,..., weH,), (3.15)

where )\0, ¢y are some positive constants.
Now consider the sesquilinear form

B(o) [u, ] Z Z /anJ Yagim (z )u(k)( v(z d$+zBmz

h=1 [k|=|l|=jn
+/\/d26(x)u(ac)@dx,

where @y (2) = [(1 =1 (2))ar (2m) + 0 (@) ar ()] (2m) for |k = (U] = jn, h =
I, p. Since a), (#) = @i (@) = 1 (@) (30 (@) = Y0 (@) s (@) (k] = 1] = jn, b=

13
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1, p) and coefficients ay;(z) are bounded, then using the Cauchy-Bunyakovsky
inequality it is proved that

0 0
1B T, 0] — B Ju, v]| < M A fJus Hy | - [|v; Hy |

for all u,v € C§°(R™). Here A = sup |nm () (ym (2) —7(zm))|, where the supremum
is taken over all x € R, h=1,pandallm=1, 2, 3, ....
Applying this inequality, from (3.15) we find

Collu; H |2 < Re( 0 [u, ] —Bg‘?)n[u,u]) +ReBY) [u,u] <
< Re B [u,u] + M A |Ju; He |2,

Since |7 () (yn(2) —yn(zm))| <v, h=1,p, m=1,2,...and v is asufficiently
small positive number, then from the resulting inequality it follows that

collus By |[* < ReBS), [u, u] (3.16)

for all u € C§°(R™). Here A\ > AJ and A are the same positive number as in
(3.15).
Enter the following sesquilinear form

B;m [u, v] Z Z /d%‘] Yagim (2)ul® (2)v® (z)dz-+

h=1 |k|=[l|=jn
q —_—

Yam) ZBm i (w0 +)\/d25(x)u(x)v(x)dm, (3.17)
s=1

where agim () = (1 = N (@) akt(Tm) + (@) ar (@), [k = |I| = jn, h=1,p.

We note that B [u v] = Y(2m) B, .m[u, v], where A, = Ay~ (z,,). Therefore,
from inequality (3 16) it follows that for A > Ao, where )¢ is some sufficiently large
number, the inequality

collu; Hyl|* < Re{y(zm)Bxmlu, ul}, v € C°(R™) (3.18)
holds.

Further, without loss of generality, we will assume that the number (see (3.1))
1, = 1 in condition (2.4) is such that ¢ > 7/2. By virtue of (2.4), inequality (2.5)
will also hold if v(z) is replaced by exp(if(x)) , where

0(x) = min{y — /2, [argy(x)[} (sign argy(z)).
Therefore, from inequality (3.18) it follows that
collus By 2 < Re {exp(ifm) Bym[u,ul} , u € C3°(R™). (3.19)

Here and below 6, = 0(z,,), m=1,2,....
Doing the same thing as in the proof of inequality (3.9), we find

[Bim [u, v]| < (Mo + [ADus Hyll - [lo; Hyll, v e C5°(R™). (3.20)

14
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Inequalities (3.19), (3.20) allow us to apply the generalized Lax-Milgram theo-
rem [7, theorem 2.0.1]). According to this theorem, there is an operator R, ())
that implements a homeomorphism of the spaces H and H_ such that

<7€m()\)u, v> = exp (i) Bam [u, v], v e Hy. (3.21)

Let’s denote Ry, (A) = R-1(A) : H_ — H... Then it follows from equality (3.21)
that

exp (i) Bam [Rim (N F,v] = (F,v), FeH_,veH,. (3.22)
The operator R,,()\) is bounded and
R (N F;Hy|| < My [|[F;H_||, FeH_, A> ). (3.23)
Here the number M; does not depend on F' and A, and the number )\, is the same
as in (3.18).
We introduce the operator
RO = exp(ifn) P Rim (A) P, (3.24)
m=1

which acts from H_ to H. Here and below, the symbol ®,,, denotes the operator
of multiplication by the function ¢, (x).

Since the coefficients ax;(z) (|k|, |I| < r) are bounded, then by applying the
Cauchy-Bunyakovsky inequality it is proved that

Blu, o) + 3 [ @ pule)@ide| < (Mo + s |- el v € B

Therefore, the operator R(A) defined by the equality
(R(N)F,v) = B[R(A)F,v] + /\/d25(z) (RANF) (z)v(x)dx (Yo e Hy) (3.25)

acts from H_ to H_.

According to our constructions, the functions ¢2,(z), m = 1,2, 3, ..., form
a partition of the unit R™, therefore for all F' € Ly 5(R™) and all v € Hy the
following equalities hold

o0

(F,v) = (F,v)s = Y (pnF, pmv)s. (3.26)
m=1
Since agim () = (1—0m () ki (Tm) +1m (x)agi (), and the function 0y, (z) identity
equals to one in some neighborhood of the set supp ¢.,, then the functions ak, (x)
and ag; (x) on the set supp , ., match. Therefore, from equalities (3.24) and (3.25)
it follows that

= Z eXp(iQm) Z /d2aj (x)aklm(x)Dk(‘PmRm(/\)(I’mF)(x)U(l)(x)dx +

m=1 |kl=lll=je T

+ )\/d25(x)(7€m(A)q)mF)(a:)gom(x)v(x)dx}. (3.27)

15
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Let F' € Ly 5(R™). In equality (3.22) we replace F with ¢, F, and v with ¢,,v:
exp(i0m) Baim [Rin(N) @i Fy 0mv] = (pmE, omv)s.

From here, taking into account the equality (3), it follows that

(emF, pmv)s = exp(iby, ) X

) { 2 / > (2)akim () D* (R (\) @ F) (2)) D' (om(2)0(x))da +

|k|=|l|=j€J
+ A / dz‘;(x)(Rm(A)@mF)(x)gam(x)v(a:)dz}.

Summing this equality over m from 1 to infinity, by virtue of (3.26), we have

(F,v) = (F,v)s =Y _ exp(ify,)x

m=1

’ { 2 / 02 (2)agim (@) DY (R (V)@ F) (@) DY (g (@)0(a))da +

|k|=|l|=5€J
A / d25(x)(Rm(A)@,,LF)(a:)@m(m)v(x)da:}.

From here and from (3.27) it follows that

(RN F,v) — (F, v) = Z exp(ibm,) { Z /d2ocj () Qi (2) X
m=1 |k|=|l|=5€J
% { D* (en RN @ F)(2)) v (@) -
D" (RN @ F)(2)) D! (o (@)u(2)) } da} . (3.28)

‘We denote
Upr(@) = RN @ F)(z), m=1,2, ... (3.29)

Then, by virtue of equality (3.28), we have
(RN F,v) — (F, v) = Ky\[F, v] + Ly[F, v], (3.30)
where

Ka[F, o] =Y > exp(ifn)x

m=1 |k|=|l|=jeJ

1 1 7 1" —
xzi)ck, / 02 (2)aim (1) %) (DU (@)D (2)dz,  (3.31)

16
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v] = Z Z exp (i, ) ¥

m=1 \k\—m—jeJ
e / A2 () agim (2) U A (@)l ()00 (2)d. (3.32)

Here the symbol Z h Y denotes summation over multi-indices &', k” such that k =
k' + k", K #0, and the symbol 21(2) denotes summation over multi-indices ', 1"
such that [ =1 +1", " #0.

Consider a symmetrical sesquilinear form

gk;m[u,v] = % {exp(iGm)B,\;m[u,v] + exp(—i@m)B,\;m[v,u]} , (3.33)

D(Bxom) = H.
There is a self-adjoint operator Bj., in the space La s(R™) generated by a
symmetric form (3.33) such that

Asm 7 T m

(Bl./Zu Bl,/zv) . = Bam[u,v], uw,v € H,. (3.34)

Lemma 2 A) There is a non-negative number Ao such that for A > Ao and all
j € J for any multi-index k such that |k| = j, and any m =1, 2, 3, ... operator
d=IkID* B}, 1/2 is a bounded operator acting from Lo 5(R™) to Lo a,+; (R”)

B) if \k| =jeJ, k=kK+k" and |K'| # 0, then there is a positive function q(\)
such that g(A\) — 0 for A — oo and

[ Mo DY i Ly s (B < aOIBY 2 Lo s (R (3.35)
forall w € H
Proof. Tt follows from (3.34) that
1By 2 u; Lo, 6 (R™)|[% = Re {exp(i6l) Brm [u, u]} (3.36)
Therefore, by virtue of the inequality (3.19) we have
1B s Lo s (B 2 eolus He | (3> o) (3.37)

for all w € H,. Hence, by virtue of the definition of the space H, it follows that

ZHu Vi, (R")
(kl=7€d, m=1,2,..., ueHy).

Since for any index i, of a non-leading form there is an index jj of a leading form
such that

than it follows from (3.38) that

< Mo||BY2u; Ly, 5(R™)| (3.38)

, u€ C(RM),

Uu; ‘G‘,gab(Rn)H < M,

Ve
U3 ‘/2;hajh (Rn)

u; V3,0, (R")

< MOHB s Lo s(R™)||.

17
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Future it follows that
Hd*\k\pku; LQ,QM(R”)H < Mo|| BY2u; Ly, 5(R™)|),
(Jkj=j€ed, m=1,2,..., ueH,).

Therefore, the operator d~ ¥ ‘D’“B;:n/2 is a bounded operator acting from Lo _s(R™)
to LQ, aj+j (Rn)

We proceed to the proof of point B) of Lemma 2. Consider the case 0 # |k”| <
|k| < r. Applying Lemma 1 we get

4@ @) DX uw); Lo,y (RY)|| <
< Hd—ka”u; Lg,am(R")H . (3.39)

On the other hand, from [23, Lemma 2.2], in particular, it follows that for any
7> 0 and all u € C§°(R™) the following inequality is valid

Hd*\k”Dk”u; L2,aj+j(Rn)H < THu;Lé;a(R")H + cor ||u, L27Q_7+j(R”)|| ,

where
1/2

i 2 o, 2] =4 3 [ (@ @ (o)) do

|t=7
and
p= K"/ = K"]). (3.40)
Since 0 # |k”| < |k| = 7, then p is a finite positive number.
From the above inequality and from (3.39) it follows that
4 @)l @) DY u(@): Lo,y s (RY)|| < 7lhus L5 o, (RY)]1+
+ CoT7H HU, LQVOL]._F]'(RTL)H .

By squaring this inequality, we obtain (we again denote v/27 by 7)

, 1" 2
delkl(x)@r]f ) () D" u(x):; LQvaﬁj(Rn)H =

< 72lu; L o, (R 4 err ™|

2,aj

u; L2,aj+j(Rn)H2 .

Since § = 1§mhiI§1p (e, + jn) and for any index i, of a non-leading form there is
an index jj of a leading form such that a;, +is > «a;, + jp, then 6 = 1}16151 (o + 7).
Therefore, the following inequality holds

|5 L2, ;45 (R)|| < flus Lo, s(R™)||, € J. (3.41)

Next, applying the inequalities (3.37), (3.41), we have

/ 1" 2
Hd—lkl(x)@gf )(2) D" u(x); L2vaf+j(Rn)H =

< 72| BY2w; Lo, s(R™) % + exm % || Lo, s(R™)].
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VARIATIONAL DIRICHLET PROBLEM

From here, by virtue of equality (3.36), it follows that

’ " 2
47141 (@)% (@) DM (2); Lo, a,5 (R)|| <
< 72Re {exp(i6m ) Baim [u, u]} + c1 772 ||lu; Lo s(R™)]>. (3.42)
Using equality (3), we estimate the right-hand side of this inequality

72Re {exp (16 ) Basm [u, u]} + T [l L275(R")||2 =

= 7?Re { exp(if,,) Z /d2o‘f (x)aklm(x)u(k)(z)u(l)(x)d:z: +
|kl=ll|=j€J

+ /\/d25(a:)|u(x)2dm>} +m*2#/d25(x)|u(x)|2dx <

< 72Re < exp(iby) Z /dmi () anim (2)u® (2)u® (z)dz +
ki=lti=se

+ A7) / d25(x)u(x)|2dx) }

where A(\, 7) is a continuous function satisfying the condition A + ¢;772#72 <
A(A, 7). From (3.40) it follows that u+ 1 = j/(j — |k”]). Since 0 # |k”| < j, then
AN\, 7) = 00 if 7 = 0 or A — oo . Therefore, from the inequality obtained above
for A = 1/7 and from (3.42) it follows that

’ " 2
delkl(x)@r’j)(x)Dk u(x); Lz,aj+j(Rn)H <

< 7°Re { exp(if,,) Z /dzo‘f () agim (2)u® (2)u® (z)dz +
|k|=|l|=5€J

+ p(T)/dz‘S(x)u(x)Fdx)}, (3.43)

where p(7) = A(1/7, 7). Note that p(t) — oo for 7 — 0. Let ¢(-) denote the
inverse function of p(7). Then for 7 = ¢(A), that is, for A = p(7), it follows from
(3.43) that

[ () ) D ) LB <
< q(N)?Re { exp(if,) Z /dzai () agim (2)u® (2)u® (z)dz +

|k|=|l|=j€J
+ )x/d%(x)u(x)|2dx)}.

Here a positive continuous function ¢(A) is defined for positive values of A and
such that g(A) — 0 for A — co. From the inequality obtained above, by virtue of
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equalities (3), (3.36), it follows (3.35). Statement B) of Lemma 2 for |k”| # 0 is
proven.
Consider the case |k”| = 0. The inequality (3.35) in this case takes the form

4716 (@)u(@); Lo, a,44(R™)| < aIBYBws L, s(RY)] (3.44)

for all u € Hy; |k| =5 € J and ¢(A) — 0 for A — co. By Lemma 1 the inequality
(3.44) follows from the inequality

15 Lo, a5 (R™)|| < g BY s Lo, 5(R™)], (3.45)

that is proven below.
Let A > Ao, where Ag is the same positive number as in (3.37). Then using
equality (3.33), we have

1B/ w; Lo, 5(R™) > = Re {exp (i) g [u, u]} =

= Re | exp(ifn,) Z /dQO‘f () agim (2)u® (2)u® (z)dz+

k|=ll|=j€J
+)\/d26(x)|u(x)2d:v>} =

= ||BY? w; Ly s(R™)|> + (A — )\O)cosﬂm/d2§(x)|u(x)|2dx >

Ao;m

> (A= Ao) cos O, / 025 () u() |2 d.
It follows from here that
1
s Lo, 5(R)|? = / 0 (2)u(z) Pdz <

- - 31/2 - L R"™ 2.
(= ha) cos Oy, | im i Lo

Introducing the notation g(A) = 1/4/(A — Ag) cos 0y, from the last inequality we
obtain

lu; Lo, s(R™)|| < g(\)||BY.2u; Lo, s(R™)]|.

Aym

From here, by virtue of the inequality (3.41), the inequality (3.45) follows.

(I

Bilinear form exp(i6,,)Bx.m[u, v] satisfies the inequalities:
col|us HLy [|* < Re {exp(ifly ) Bxm[u, ul}, € Hay; (3.46)
[Baim [u, v]] < (Mo + [ADlus Hoy || - [JosHoy ||, o, v € Hy. (3.47)

The numbers ¢y, My > 0 in these inequalities do not depend on w(z), wv(z). It
follows from here that D (B, ) = Hy.

According to inequalities (3.46), (3.47), the bilinear form exp(i6,,)Bx.m[u, v] is
closed and sectorial. Therefore, using [24, ch. 6, Theorem 2.1], we obtain:
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I) there is such an m — sectorial operator Aj.,,, which for all u € D(Ax,) C
D (Bx.m) = Hy and all v € H the equality
exp (i) Bx.m [u, v] = (Ax.mu, v)s,

holds, where (-, -)5 — the scalar product in space the Lg_s(R™);

II) if w € Hy, w € Ly 5(R™) and exp(ifm)Bam[u,v] = (w, v)s for all v
belonging to the kernel of the form By, then u € D(Ay,,) and Ax,pu =
w.

Let f € Ly s(R™). Then f € H_ and therefore R,,(\)f € H; and due to
equality (3.22)

exp(i0m) Bam [Rim(N) f,v] = (f,v), v e Hy. (3.48)

By virtue of statement I), it follows from equality (3.48) that Ay, Rm(A\)f =
f, Vf € Ly 5(R™). Hence,

RN f = Ao f, [ € Lo s(R™). (3.49)
Let By, is a self-adjoint operator in the space La 5(R™) generated by a symmet-
ric form (3.33). For all u,v € H the equality (Bi/riu, Bi{iv)é = Bium[u, v] holds.

From here, with u(z) = v(z), taking into account the equality (3.33), we obtain

2
B s L, s ()| = Re{exp(i6im) Brim(u, 1} (A= Ao > 0).

Next, applying inequality (3.19), we find
| BY s L, o (R?)

> Cllus Hyll (A= Ao > 0)
for all w € H,. This implies the invertibility of the operator Bi;/jl for A > Xy > 0.
Using [24, ch. 6, Theorem 3.2], we obtain the representation

AL = B P X (B (A2 A > 0), (3.50)

where X,,(A\) : Lg s(R™) — Lo s(R™) is some bounded operator, and its norm
[IXm (A)] is not exceeds the numbers My > 0, independent of A € [Ag, 00).
Lemma 3. There is a positive function wy(A), A > 0, such that

KALF, o] < wn(\) | F3E| - los L | (3.51)
for all F € Ly s(R™), v € Hy, and wi(A) — 0 for A — oo.
Proof. We rewrite equality (3.31) in the form

K)\[F, U] =

00
1 " ’ "
= E exp(i@m) E ( )C,];/ (da-jaklr,n(pgﬁ)(]g’)\), dajv(l)>, (3.52)
m=1

where
Una(z) = Ry N@nF)(z), m=1,2,...,

and the symbol Z(l) denotes summation over multi-indices k, I, k', k" such that
k=K +EkE' K £0,kl=]l|=j€J.
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Let F € Ly 5(R™). Using equalities (3.29), (3.49) — (3.52), we have
K)\[Fa ’U] -

1 ’ ”
= Z Z( )Ck, exp(ibpm,) <d_|k|aklmapgf ) Dk A;nq)mF, d_l”v(l)) =
’ aj+j
D
= Z Z CF exp(ify,) X
m=1
% (A7 &) DF B2 X0 (N B 2@ By d o (2)) g 4.
Next, applying [22, Lemma 2.2] and the Cauchy-Bunyakovsky inequality, we have
3)
[KA[F,v]| < Ay sup Z (T2 e o (M) Vimxs L2, 45 (R™)|] X

xW*%muxmﬂﬁxww

, (3.53)
where

Tl,k’,k”,m()\) —d- |k |—|&"| k/)akl Dk B71/2

Am 0

Viur (@) = XN By (omF) (@), (3.54)

and the symbol Z(S) denotes summation over multi-indices k', k", [ such that
K|+ k"] = |l| = j € J and k' # 0.
Because

a0 @) Lo,y 45(RY)

< losHyll (v e G°(R™))
for any multi-index I : |I| = j € J, then from (3.53) the inequality follows
IKALF, ]| <

< H'U H+|| bup Z HTZ K, k''m (A)VWMA;LQ,OCJ--‘,-]' (Rn) , (355)

Let Ag be the same number as in (3.37). Then for A > Ag due to equality (3.36)
we have

| B2 s Lo s "~ Re{exp(i6h) B, ]} =

= Re{exp (i) Bagym [, u] } + cos(0, ) (A — AO)/d25(x)|u(x)|2dx >

2
> Re{exp(ibym) Brgim[u, u]} = HB u; Lo s(R™) (3.56)

)\0m

It follows that for A > Ay the operator Bl/2 B2 is a bounded operator and its

Asm
norm does not exceed one. Since the operator B, is self-adjoint for all values of
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A > 1, then for A > A\g the operator B,, 1/2B1/_2 is also a bounded operator, and

Ao,m
its norm does not exceed one. Taking thls into account, we have

B rs H
< e < [y i <
< B o) Las (@) 357)
Let 2 be some region in R™. The norm in the space Lo(f2) can be specified
using the equality

1f; L2(Q)|| = sup [(f, )], (3.58)

where the supremum is taken over all v € Lo(Q2) such that |lv; L2(2)|| = 1. Since
C§°(Q) is dense in Lo (), then in equality (3.58) we can assume that the supremum
is taken over all v € C§°(Q2), such that ||v; L2(Q)|| = 1.

In equality (3.58) we replace f with d°f and v with d’v and get the equality

1f5 L2, s ()| = sup [(f, v)s], (3.59)
where the supremum is taken over all v € C§° () such that ||v; La, s(Q2)]| = 1.
For A = \o, from equality (3.34) we have (Bié?mu, Bié?mv>5 = Bigim[u,v], On
the other side,

Bigimlu, u] > [lus Hy |

< (Mo + Ao) [lu; Hop || - [Jos Hy ||

’gko;m [u, v]
for all u,v € C§°(R™). Therefore, according to the Lax-Milgram theorem, the
equation By,.m[u,?] = (w,?)s Yu € C§°(R™) has a solution for any w € Ly 5(R™).
Therefore, the function v € C§°(R™) in (3.59) can be represented as v = B2

Ao;m
that is || f; L2, s(R™)|| = sup ’ (f’ Bif/);zmw)é

, where the supremum is taken over all

w € C§°(R™) such that HB}\ézmw, Ly s(R™)

On the other hand, in class C§°(R™) the norms ||v; H || and HBifmv, Lo 5(R™)

are equivalent. Therefore

HB/\OI{S(QDWLF);LZ s(R H = SUP‘( )\0 m ‘Pm ) ‘ =
—sup‘( . m(gomF),Bifmv)é‘<<sup\(<,0mF,v)5|<<
<L lemFH-|| < |[F;H-||, - (3.60)

where the first supremum is taken over all w € C§°(R™) : ||w; Lo, s(R™)|| = 1, the

second supremum is over all v € C§°(R") : BY? w; Ly, s(R™)|| = 1, and the third

A(),m

supremum is over all v € C§°(R"™) : |lo; Hy || = 1.
Due to (3.57) from (3.60) the inequality follows ||V, x; Lo, s(R™)|| < M || F;H-_ ||,
which is valid for A > )\g, where Ay > 1 is some finite number.
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Since § < a;j + 7 for all j € J, then d**/(z) < d°(z) and from the resulting
inequality follows that

|Vinoxs Lo, a4+ (R™)|| < M |FH_|| (weHy, j€J,A>Xo). (3.61)
From statement B) of Lemma 2 (see (3.35)) and equality (3.54) it follows that
lim ||Tl,k’,k”m()‘)|| =0. (362)

A—00

In view of this equality, from (3.55), (3.61), (3.60) we obtain

IKA[F,v]| <

< sup sup T2k e (M- Vi x5 L2, s (R™) | flos Hy || <
m=1,2, .. ||+ |k |=j€J; k'#£0

< wi(A) [ F5H- - o He |
for all F € Ly 5(R™), v € Hy, and w1 (A) = 0 at A — oo.
Thus, the estimate (3.51) is proven, which completes the proof of Lemma 3.
(I
Lemma 4. There is a positive function wa(X), A > 0, such that
[LALE, o] < wa (o) [[F5H-| - [lv; Hy || (3.63)
for all X\ > g and for all F € Ly 5(R™), v € Hi. A positive function wa(Xg) such
that wa(Ag) — 0 for Ny — oo.

Proof. We represent the sesquilinear form (see (3.32)) Ly[F, v] in the form

=3 explib) > Z gg;’m 1, (3.64)

|kl=|l|=j€J
where
]Il>\;7llc,m[F7 U] = C(ll’ (dilk‘aklmUr(rf,)M dill =1t ‘SpgrlL)U(l )>a'+j :
Since (see (3.49), (3.50))

Rin(N) = A, = Bt XN By (A= A > 0),
then the form Hl):,’l,;/m[F, v] can be written as

I By 0] = (47 Magn DX B2 X (N By 200 Py d 1711160 D)
’ a;+j

Further, using the notation (3.54) we have

Hl)::lk”’m[F, 'U] — (d_lk‘aklkaB;i,PVm,)\, d_|l,‘_‘l,,|g0£fl,)Dl”U> y .
Ctj J

Since D"'v = Dl”B;Ol;fj B}\é ?mv and By,;m is a self-adjoint operator, then

l/ l//
]IA k_m[F, v] =

— (B 1/2Dl” (l)d [k|—=[1"]— ‘l”‘akl DkB 1/2‘/771’)\,‘31/‘2 ’U) ) (365)
a;j+j

Ao,m
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In the process of proving Lemma 3, we used the notation (see (3.54) )

Tl,k’,k”,m(A) = dilk/‘7|k”|g0$r]:/)aklka”B_l/2

A;m

and proved that (see (3.62))

m [Ty v (A)|| =0 (3.66)
A—00
for |E'| 4+ |k"| = j € J; k' # 0. Hence,
Tit m(ho) = A7 p0D ag,, DV B2

and
* 71 2 " ! _ ’ _ 1"
T* 1 0rm (M) = By e DV o a= =1y,

Since the norm of the bounded operator coincides with the norm of the conjugate
operator, it follows from (3.66) that

lim ||T*l’,l”,m()\0)|| =0 (367)
Ag—>00

for [I'|+|I"|=j€ J; U #0.
Using the introduced notation, equality (3.65) is written in the form

0" — k| HE p—1/2 1/2
HA;k,m[F7 v] = (T*l’,l”,rn(AO)d D B/\;m{ Vinxs B)xé;me)m_‘_j'
J
Future we introduce a notation
_ —1/2
Prros = d FIDFB
and write the resulting equality in the form

Aoym T Am Ao;m

Il P o] = (T2 (30 P v e B Bt Vs BAL v)a‘ﬂ,. (3.68)

From (3.56) it follows that for A > A\ the operator Bi/Q B/? is a bounded

0;m=Aim
operator and its norm does not exceed one. On the other hand, according to part
A) of Lemma 2, the operator Py, x, % is bounded. Therefore, from (3.68) we have

I

< Mo | Tk 1 (A0) || HVm,A; Lz,aj+j(R")’| : HBl/z v; L2,aj+j(Rn)H (3.69)

Ao;m

for all A > ).
Previously, when proving Lemma 3, we proved that (see (3.61)),

Vi, x; Lo, s(R™)[| < My [|FH- ]

for A > Ao, where Ao > 1 is a finite number and

HB% 2 05 Lo, 5(R")

< My [|v; Hy |l
for all v € H;. Due to these inequalities, it follows from (3.69) that

l/,l,/ % . .
LI E VY N O ] T : TR - A
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for all A > Ao and for all F' € Ly 5(R™), v € Hy. Introducing a notation d,(Ag) =
M sup HT*k,l’,l”,m()\O)H , we get

ll7l//
I 01| < 6. 000) I1FSHL|| - [los L | (3.70)

for all A > A\g and for all F' € Ly 5(R™), v € Hy.

From (3.67) it follows that d.(Ag) — 0 for Ay — 0. Therefore, choosing the
number A large enough, from (3.70) and (3.64) by virtue of [22, Lemma 2.2] we
obtain (3.63).

(]

Applying the inequalities (3.51), (3.63), established, respectively, in Lemmas 3
and 4, from (3.30) we obtain

[(ROA)E, v) = (F, 0)] < (w1(A) + wa (o)) [ F5H-| - [|v; Hy|]

for all F € Ly 5(R™), v € H;. Since wi(A) — 0 at A — oo and wa(Ag) — O for
Ao — 00, then there is a number Ag > 1 such that

[(ROA)F, 0) — (F, v)| < % [ H ] - Jlo; Hy | (3.71)

for any A > Ao and for all F' € Ly 5(R™), v € Hy. Since, by the definition of
the space H_, the space Lo 5(R"™) is densely embedded in H_, then the estimate
(3.71) true for every F € H_.

From the estimate (3.71) it follows that for A > Ag the operator G(\) = R(\) —
E, acting from H_ to H_ is bounded and its norm does not exceed 1/2. Therefore
the operator R(\) : H. — H_ is continuously invertible and R™1(\) = (E +
G(\)~ L.

The operator R,,(A\) acts from H_ to H,;. Therefore, from (3.24) it follows
that the operator R(A) also acts from H_ to H,. Therefore, for any functional
F € H_ the function U(z) defined by the equality

U=R\RINE (A> X)), (3.72)

belongs to the space H .

Further we will assume that A > Ay and Ay are some sufficiently large number.
Then from equality (3.24) it follows that By[R(A)R™H(A)F,v] = (F,v) for all
v € C§°(R™). Therefore, for A > A, the function U(z) defined by the equality
(3.72) satisfies the equality By[U,v] = (F,v) Vv € C§°(R™). This means that the
function (3.72) is a solution to the problem Dy. Since for A > Ao operator R1(\)
is bounded, then from (3.23) and (3.24) it follows that the function (3.72) satisfies
estimate (2.6) of the main Theorem.

Thus, we have proven that the problem Dy for A > A\g has a solution for any
given functional F' € H_, and it satisfies the inequality (2.6).

Now we proceed to the proof of the uniqueness of the solution to the problem
Dy,

Consider the conjugate problem: for a given functional F' € H_ find the function
U, € H, satisfying the equality

Bi[v, Uh] = (F,v) Vv e H,. (3.73)
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Since the coefficients of the bilinear form B)[v,U;] satisfy the conditions of the
theorem 1, proceeding in the same way as above, we can construct the operators
R«(N), R, (A) such that the function U; = R.(A)R,(A\)1F
(A € [A§, 00)) belongs to the space H; and satisfies the equation (3.73).

Let the function v € H; be a solution to the equation

Balu,v] =0 (Yo € Hy), (3.74)

where A > A, = max{\j, \o}. Let F be an arbitrary element of space H_. Since
Up = R.(MR.(AN)7LF belongs to the space Hy, then, putting v = U; in (3.74),
we obtain By[u,U;] = 0, that is By[u,U;] = 0. On the other hand, the function
Up = R (MR, (A)7LF satisfies (3.73). Therefore (F,u) = 0 for all F' € H, . Taking
into account the embedding H; — H_ and setting F' = u, we have (u,u) = 0,
that is, u = 0.

The main theorem is completely proven.
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