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Abstract. One of the most important tasks in the theory of differential
equations and systems of partial differential equations is to obtain and de-

termine exact solutions. However, it is not always possible to find accurate

solutions. In this article, we have tried to find some exact periodic solutions
for the quasilinear equations of a system of electrical circuits. In order to

obtain solutions in the nonlinear case, the method of elliptic decomposition

of Jacobi functions was used [1]. A similar method has been used to obtain
exact periodic solutions of the Korteweg-de Vries and Klein-Gordon equations

in [1-6].

On surface R2 variables (x, t) considered a system of electrical circuits of the
form [3],[8] {

∂i
∂x + c(v)∂v∂t +G(v) = 0
∂v
∂x + L(i) ∂i∂t +R(i) = 0

(1)

where i(x, t)- current, c(v)- capacity coefficient, G(v)- leakage coefficient, v(x, t)-
voltage, R(i)- opposing and L(i)- self-induction coefficient We will consider system
(1) under the following assumptions:

c(v) = v2, G(v) =
∂3v

∂x3
, R(i) =

∂i

∂x
, L(i) = L = const. (2)

In system (1), instead of c(v), G(v), R(i), L(i) Substituting their values accord-
ingly (2), we get, a quasilinear system of equations of the form{

∂i
∂x + v2 ∂v

∂t +
∂3v
∂x3 = 0

∂v
∂x + L ∂i

∂t +
∂i
∂x = 0.

(3)

For a system of equations (3), we will look for wave solutions using snξ- sine
amplitude, cnξ- cosine of amplitude and dnξ- delta of amplitude of Jacobi functions
[1],[4],[5].

In the system (3), by replacing variables of the form ξ = k(x − ct) (where k
and c constant, wave number, and wave velocity, respectively) moving on to a new
change for functions
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i(x, t) = i(ξ), v(x, t) = v(ξ). (4)

Thus, relatively to (4) we obtain an ordinary system of differential equations{
∂i
∂ξ + cv2 ∂v

∂ξ + k2 ∂3v
∂ξ3 = 0

∂v
∂ξ − (cL− 1) ∂i∂ξ = 0.

(5)

By the method of decomposition by elliptic Jacobi functions, the solution i(ξ)
and v(ξ) can be expressed as a finite series, i.e. [1]

i(ξ) =

n∑
j=0

ajsn
jξ, v(ξ) =

n∑
j=0

bjsn
jξ, (6)

where n-th term of the higher-order derivative and the nonlinear term of the
equations of the system are balanced. In our case, n = 1 get the finite rows

i(ξ) =a0 + a1snξ,

v(ξ) =b0 + b1snξ,
(7)

where a0, a1, b0, and b1 as yet unknown permanent. Thus, the solution of the
system of equations (5) will be sought in the form (7).

d(snξ)

dξ
= cnξdnξ,

d(cnξ)

dξ
= −snξdnξ,

d(dnξ)

dξ
= m2snξcnξ,

cn2ξ + sn2ξ = 1, dn2ξ +m2sn2ξ = 1 with module (0 < m < 1).

(8)

Using formulas (8), we get

∂i

∂ξ
=a1cnξdnξ,

∂v

∂ξ
=b1cnξdnξ,

∂3v

∂ξ3
=(−(1 +m2)b1 + 6b1m

2sn2ξ)cnξdnξ.

(9)

Substituting (7) and (9) in the system of equations (5), we arrive at the following
system of algebraic equations

(a1 − cb20b1 − (1 +m2)b1k
2)− 2cb0b

2
1snξ+

+(6b1k
2m2 − cb31)sn

2ξ = 0,

b1 − (cL− 1)a1 = 0.

(10)

In the system (10), equating the coefficients with the same powers snξ to zero,
we have
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a1 − cb20b1 − (1 +m2)b1k

2 = 0

−2cb0b
2
1 = 0

−cb31 + 6b1k
2m2 = 0,

b1 − (cL− 1)a1 = 0.

(11)

From the system (7), we determine the unknown coefficients in the representa-
tion (11)

a0 = 0, a1 =
1

cL− 1

√
6

c
km, b0 = 0, b1 =

√
6

c
km, (12)

which are at the cL− 1 > 0, c > 0, k ̸= 0 and

m2 + 1 =
1

k2(cL− 1)
or m2 =

1− k2(cL− 1)

k2(cL− 1)
, (0 < m < 1), (13)

satisfy (11). Then we will be able to determine the exact periodic solutions of the
system (5) if the condition in the form of (13)

i(ξ) =
±
√
6km√

c(cL− 1)
snξ,

v(ξ) =±
√

6

c
kmsnξ,

(14)

where the modulus m2 of the elliptic function sine amplitude (snξ) is computed
by the formula

m2 + 1 =
1

k2(cL− 1)
or m2 =

1− k2(cL− 1)

k2(cL− 1)
. (15)

Now, moving on to the initial changes, we get the following kind of solutions

i(x, t) =i(k(x− ct)) =
±
√
6km√

c(cL− 1)
sn(k(x− ct)),

v(x, t) =v(k(x− ct)) = ±
√

6

c
kmsn(k(x− ct)),

(16)

So, it’s proven

Theorem 1. Let all the coefficients of the system of equations (5) be non-zero,
in addition cL− 1 ̸= 0, c > 0, k ̸= 0 and the modulus of the elliptic function m2 is
calculated by formula (15). Then the system of equations (3) has an exact periodic
solution in the form (16) with the modulus m2 calculated using formula (15).

In the same way, we will look for the solution of a system of equations (5) using
cnξ Jacobi functions

i(ξ) = a0 + a1cnξ, v(ξ) = b0 + b1cnξ, (17)
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where a0, a1, b0, and b1 as yet unknown constants. Here, also using the formulas
(8) and (17), we get

∂i

∂ξ
=− a1snξdnξ,

∂v

∂ξ
=− b1snξdnξ,

∂3i

∂ξ3
=((1− 2m2)b1 + 6b1m

2cn2ξ)snξdnξ.

(18)

Substituting equations in the system (5), (17) and using the formulas (18)
similar to the one above, after simple transformations, we determine the coefficients
a0, a1, b0 and b1 at cL− 1 ̸= 0, c < 0, k ̸= 0 and

2m2 − 1 =
1

k2(1− cL)
or m2 =

k2(cL− 1)− 1

2k2(cL− 1)
, (0 < m2 < 1), (19)

a0 = 0, a1 = ±
√

−6

c

1

cL− 1
km, b0 = 0, b1 = ±

√
−6

c

1

cL− 1
km. (20)

Then the exact periodic solutions (5) are obtained in the case of cL − 1 ̸= 0,
c < 0 and k ̸= 0 in the form of

i(ξ) =±
√

−6

c

1

cL− 1
kmcnξ,

v(ξ) =±
√

−6

c

1

cL− 1
kmcnξ,

(21)

In this case, the elliptic cosine argument module (cnξ) is calculated by the
following formula (19)

From here, moving on to the initial changes, we get the following kind of solution

i(x, t) = i(k(x− ct)) =±
√

−6

c

1

cL− 1
kmcn(k(x− ct)),

v(x, t) = v(k(x− ct)) =±
√

−6

c
kmcn(k(x− ct)),

(22)

when cL− 1 ̸= 0, c < 0 k ̸= 0 and module m2 is calculated by the formula (19).
So, it’s proven.

Theorem 2. Let all the coefficients of the system of equations (5) be non-zero, in
addition cL−1 ̸= 0, c < 0, k ̸= 0 and an elliptic function module cnξ, m2 calculated
by formula (18). Then the system of equations (3) has exact periodic solutions of
the form (22) using the cosine of the amplitude - cnξ Jacobi functions.

Now, in the same way, we find the solution of the system of equations with the
help of (5) dnξ - delta of the amplitude of Jacobi functions as
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i(ξ) = a0 + a1dnξ,

v(ξ) = b0 + b1dnξ,
(23)

where a0, a1, b0 and b1 as yet unknown constants. Hence, for the definition of
derivatives i(ξ) and v(ξ) using formulas (8), we find

di

dξ
=− a1m

2snξcnξ,

dv

dξ
=− b1m

2snξcnξ,

d3i

dξ3
=((m2 − 2)a1m

2 + 6a1m
2dn2ξ)snξcnξ.

(24)

Substituting (23), (24) in the system of equations (5) and proceeding above by
the method, we determine the unknown coefficients at cL − 1 ̸= 0, c < 0, k ̸= 0
and

m2 − 2 =
1

k2(cL− 1)
or m2 =

1 + 2k2(cL− 1)

k2(cL− 1)
, (0 < m2 < 1) (25)

a0 = 0, a1 = ±
√

−6

c

k

cL− 1
k, b0 = 0, b1 = ±

√
−6

c
k, (26)

The obtained values of coefficients (26) satisfy our system (5) with the following
relations of the form cL−1 ̸= 0, c < 0, k ̸= 0 where the modulem2 elliptic functions
of delta amplitude (dnξ) is calculated by the following formula (25). Thus, the
following exact periodic solutions of the system of equations are determined using
the delta amplitude (5) (dnξ) Jacobi functions

i(x, t) = i(k(x− ct)) =±
√

−6

c

k

cL− 1
kdn(k(x− ct)),

v(x, t) = v(k(x− ct)) =±
√

−6

c
kdn(k(x− ct)),

(27)

moving on to the initial changes, we get

i(x, t) = i(k(x− ct)) =±
√

−6

c

k

cL− 1
kdn(k(x− ct)),

v(x, t) = v(k(x− ct)) =±
√

−6

c
kdn(k(x− ct)),

(28)

at that, cL− 1 ̸= 0, c < 0, k ̸= 0 and m2 - is calculated by the formula (25).
So, it’s proven.

Theorem 3. Let all the coefficients of the system of equations (5) be non-zero, in
addition cL−1 ̸= 0, c < 0, k ̸= 0 and an elliptic function module m2 is calculated
by formula (25). Then the system of equations (3) has an exact periodic solution
of the form (28) modulo m2 calculated formula (25).
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We will now consider systems of equations (1) with the following defining equa-
tions

G(v) =
∂v

∂x
,R(i) =

∂3i

∂x3
, L(i) = i2, c(v) = c0 = const. (29)

By supplying (29) in a system of equations, we obtain the following quasi-linear
system of equations (1)

∂i

∂x
+ c0

∂v

∂t
+

∂v

∂x
, = 0

∂v

∂t
+ i2

∂i

∂i
+

∂3i

∂x3
= 0

(30)

The solution of the system of equations (30) will also be searched by the method
of decomposition by elliptic Jacobi functions [1].

As above, using the replacement of variables like ξ = k(x − ct) moving from
change x, t to variable ξ for the solution are looking for

i(x, t) = i(ξ), v(x, t) = v(ξ). (31)

Then, for i(ξ), v(ξ) system (30) we obtain the following system of ordinary
differential equations

di

dξ
− (cc0 − 1)

dv

dξ
= 0

dv

dξ
− ci2

di

dξ
+ k2

d3i

dξ3
= 0

(32)

We will seek a solution to system (32) in the form (7).
Posing (7) and (9) in the system of equations, we obtain the following system

of algebraic equations (32)
a1 − (cc0 − 1)b1 = 0,

(b1 − ca20a1 − (1 +m2)a1k
2)− 2ca0a

2
1snξ+

+(6a1k
2m2 − ca31)sn

2ξ = 0.

(33)

In the second equation of (33), equating the coefficients with the same powers of
the function snξ, to zero, after simple transformations, we determine the unknown
constants a0, a1, b0, b1, i.e.

a1 − (cc0 − 1)b1 = 0,

b1 − ca20a1 − (1 +m2)a1k
2 = 0

−2ca0a
2
1 = 0

6a1k
2m2 − ca31 = 0.

(34)

Hence

a0 = 0, a1 = ±
√

6

c
km, b0 = 0, b1 = ±

√
6

c

km

cc0 − 1
. (35)
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The value found (35) satisfies when (34) at cc0 − 1 ̸= 0, c > 0, k ̸= 0, and

m2 + 1 =
1

k2t(cc0 − 1)
or m2 =

1− k2(cc0 − 1)

k2(cc0 − 1)
. (36)

In this way, we get an accurate periodic solution of the system (30) in the form
of

i(ξ) =±
√

6

c
kmsnξ,

v(ξ) =±
√

6

c

km

cc0 − 1
snξ,

(37)

at that cc0−1 ̸= 0, c > 0, k ̸= 0, and modulem2- elliptic functions of sine amplitude
(snξ) is calculated by the formula (35).

Now, passing on to the initial changes, we obtain the exact periodic solution of
the system of equations (30)

i(x, t) =i(k(x− ct)) = ±
√

6

c
kmsn(k(x− ct)),

v(x, t) =v(k(x− ct)) = ±
√

6

c

km

cc0 − 1
sn(k(x− ct)),

(38)

cc0−1 ̸= 0, c > 0, k ̸= 0, and module m2- elliptic functions of sine amplitude (snξ)
is calculated by the formula (35).

So, it’s proven.

Theorem 4. Let all the coefficients of the system of equations (32) be non-zero, in
addition, cc0−1 ̸= 0, c > 0, k ̸= 0, and an elliptic function module m2 is calculated
by formula (35). Then the system of equations (30) has exact periodic solutions
of the form (38).

In the same way, we will look for periodic solutions of the (30) system in the
form of finite series (17).

Hence, supplying (17) and (18) in the ordinary system equation (32) find the
following exact periodic solution, with the help of cnξ Jacobi functions, as

i(ξ) = ±
√

−6

c
kmcnξ, v(ξ) = ±

√
−6

c

km

cc0 − 1
cnξ, (39)

or

i(k(x− ct)) =±
√

−6

c
kmcn((x− ct)),

v(k(x− ct)) =±
√

−6

c

km

cc0 − 1
cn(k(x− ct)),

(40)

at cc0−1 ̸= 0, c < 0, k ̸= 0 and module m2 elliptical functions of cosine amplitude-
cnξ is calculated by the formula
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2m2 − 1 =
−1

k2(cc0 − 1)
or m2 =

k2(cc0 − 1)− 1

2k2(cc0 − 1)
. (41)

So, it’s proven.

Theorem 5. Let all the coefficients of the system of equations (32) be non-zero, in
addition, cc0−1 ̸= 0, c < 0, k ̸= 0, and the elliptic function module m2 is calculated
by the formula (40). Then the system of equations (30) has exact periodic solutions
of the form (39) using cnξ Jacobi’s functions.

In the same way, we will look for exact periodic solutions of the (30) system in
the form of finite series (23) using dnξ Jacobi functions.

So, substituting (23) and (24) in the system of equations (32) and using the
above method, we obtain the following exact periodic solutions of the system (30)
in the form

i(ξ) = ±
√

6

−c
kdnξ, v(ξ) = ±

√
6

−c

k

cc0 − 1
dnξ, (42)

or

i(x, t) =i(k(x− ct)) = ±
√

6

−c
kdn(k(x− ct)),

v(x, t) =v(k(x− ct)) = ±
√

6

−c

k

cc0 − 1
dn(k(x− ct)),

(43)

at cc0 − 1 ̸= 0, c < 0, k ̸= 0 and elliptic delta amplitude function module −dnξ is
calculated by the formula

m2 − 2 =
1

k2(cc0 − 1)
or m2 =

1 + 2k2(cc0 − 1)

k2(cc0 − 1)
. (44)

So, it’s proven.

Theorem 6. Let all the coefficients of the system of equations (32) be non-zero, in
addition cc0− 1 ̸= 0, c < 0, k ̸= 0, and an elliptic function module m2 is calculated
by the formula (43). Then the system of equations (30) has exact periodic solutions
of the form (42).

The elliptic function expansion method is a more convenient method for ob-
taining exact periodic solutions to some nonlinear and quasilinear equations or a
system of partial differential equations. In the second part of our article, we tried
to determine the exact periodic solutions for a quasilinear system of electrical
circuits (1) from the following given defining equations.

So, on the plane (x, t) we consider a system of electrical circuits of the form (1)
with the following defining equations

c(v) = v,G(v) =
∂3v

∂x3
, R(i) =

∂i

∂x
, L(i) = L = const. (45)

Substituting (45) into the system of equations (1) we obtain the system
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∂i

∂x
+ v

∂v

∂t
+

∂3v

∂x3
= 0,

∂v

∂x
+ L

∂i

∂t
+

∂i

∂x
= 0.

(46)

We will look for a wave solution to this system. To do this, we move on from
variables x, t to variable ξ using variable replacement form ξ = k(x − ct), for
functions

i(x, t) = i(ξ), v(x, t) = v(ξ). (47)

We get the following system of ordinary differential equations{
di
∂ξ − cv dv

dξ + k2 d3v
∂ξ3 = 0,

dv
dξ − cL di

dξ + di
dξ = 0.

(48)

The exact periodic solution of the system (48) will be searched for in the form
of finite series by the elliptic Jacobi functions snξ, at n = 2 in the form of

i =a0 + a1snξ + a2sn
2ξ,

v =b0 + b1snξ + b2sn
2ξ,

(49)

where a0, a1, a2, b0, b1, b2 as yet unknown constants. Using formula (8), we compute
the derived functions i(ξ) and v(ξ)

di

dξ
=(a1 + 2a2snξ)cnξdnξ,

dv

dξ
=(b1 + 2b2snξ)cnξdnξ,

d3v

dξ3
=(−(m2 + 1)b1 − 8(m2 + 1)b2snξ+

+ 6b1m
2sn2ξ + 24b2m

2sn3ξcnξdnξ.

(50)

Substituting (49), (50) both in the system of equations (48) and after simple
transformations, we find unknown coefficients a0, a1, a2, b0, b1, b2 in the form of

a0 = 0, a1 = 0, a2 =
12k2m2

c2L− c
,

b0 =
1

c2L− c
− 4

c
k2m2(m2 + 1)b1 = 0, b2 =

12k2m2

c
.

Then we find the exact periodic solution of the system (42) at cL−1 ̸= 0, c ̸= 0
in the form of
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i(ξ) =
12k2m2

c2L− c
sn2ξ,

v(ξ) =
1

c2L− c
− 4

c
k2m2(m2 + 1) +

12k2m2

c
sn2ξ,

(51)

or

i(x, t) =i(k(x− ct)) =
12k2m2

c2L− c
sn2(k(x− ct)),

v(x, t) =v(k(x− ct)) =
1

c2L− c
− 4

c
k2m2(m2 + 1)+

+
12k2m2

c
sn2(k(x− ct)),

(52)

at

cL− 1 ̸= 0, c ̸= 0.

So, it’s proven.

Theorem 7. Let all the coefficients of the system of equations (48) be non-zero,
in addition cL− 1 ̸= 0, c ̸= 0.

Then the system of equations (48) has an exact periodic solution of the form
(52).

Now let’s look for a solution to the system (46) with the help of cnξ Jacobi
functions in the form of

i =a0 + a1cnξ + a2cn
2ξ,

v =b0 + b1cnξ + b2cn
2ξ,

(53)

where a0, a1, a2, b0, b1, b2 as yet unknown constants. Calculating derivatives i(ξ), v(ξ)
using (8) we find

di

dξ
=− (a1 + 2a2cnξ)snξdnξ,

dv

dξ
=− (b1 + 2b2cnξ)snξdnξ,

d3v

dξ3
=(−(2m2 − 1)b1 − 8(2m2 − 1)b2cnξ+

+ 6b1m
2cn2ξ + 24b2m

2cn3ξ)snξdnξ.

(54)

As above supplying (52) and (54) in the system (48) we find unknown param-
eters a0, a1, a2, b0, b1, b2
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a0 = 0, a1 = 0, a2 =
−12k2m2

c2L− c
,

b0 =
1

c2L− c
+

4

c
k2(2m2 − 1), b1 = 0, b2 =

−12k2m2

c
.

(55)

Substituting the found values of the unknown parameters (55) into (53) we
obtain the following exact periodic solution of the system (46) using cnξ, at cL−
1 ̸= 0, c ̸= 0,

i(ξ) =− 12k2m2

c2L− c
sn2ξ,

v(ξ) =
1

c(cL− 1)
+

4k2(2m2 + 1)

c
− 12k2m2

c
cn2ξ,

(56)

or

i(x, t) =i(k(x− ct)) = −12k2m2

c2L− c
sn2(k(x− ct)),

v(x, t) =v(k(x− ct)) =
1

c(cL− 1)
+

4k2(2m2 + 1)

c
−

− 12k2m2

c
cn2(k(x− ct)),

(57)

at cL− 1 ̸= 0, c ̸= 0.
So, it’s proven.

Theorem 8. Let all the coefficients of the system of equations (48) be non-zero,
in addition, cL− 1 ̸= 0, c ̸= 0.

Then the system of equations (46) has an exact periodic solution with respect
to cnξ Jacobi functions of the form (56) or (57).

In a similar way, we will look for the solution of the system of equations by the
method of decomposition by elliptic Jacobi functions with respect to dnξ i.e.

i =a0 + a1dnξ + a2dn
2ξ,

v =b0 + b1dnξ + b2dn
2ξ,

(58)

where a0, a1, a2, b0, b1, b2 as yet unknown constants, using (8) we get

di

dξ
=− (a1m

2 + 2a2m
2dnξ)snξcnξ,

dv

dξ
=− (b1m

2 + 2b2m
2dnξ)snξcnξ,

d3v

dξ3
(b1m

2(m2 − 2) + 8m2(m2 − 2)dnξ+

+ 6b1m
2dn2ξ + 24b2m

2dn3ξ)cnξsnξ.

(59)
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Substituting (58) and (59) into the system of equations (48) we obtain

− a1m
2 − 2a2m

2dnξ + cb0b1m
2 +m2(2cb0b2 + cb21)dnξ+

+ 3cb1b2m
2dn2ξ + 2cb22m

2dn2ξ + b1k
2m2(m2 − 2)+

+ 8k2b2m
2(m2 − 2)dnξ + 6k2b1m

2dn3ξ + 24k2b2m
2dn3ξ = 0,

− b1m
2 − 2b2m

2dnξ + cLa1m
2 + 2cLa2m

2dnξ − a1m
2 − 2a2m

2dnξ = 0.

(60)

Hence, equating the coefficients with the same powers, the function dnξ to zero
we get the following algebraic system.

− a1m
2 + cb0b1m

2 + b1k
2m2(m2 − 2) = 0,

− 2a2m
2 + c(2b0b2 + b21)m

2 + 8k2b2m
2(m2 − 2) = 0,

3cb1b2m
2 + 6k2b1m

2 = 0,

2cb22m
2 + 24k2b2m

2 = 0,

− b1m
2 + cLa1m

2 − a1m
2 = 0,

− 2b2m
2 + 2cLa2m

2 − 2a2m
2 = 0.

(61)

From this system, at cL− 1 ̸= 0, c ̸= 0, find

a0 = 0, a1 = 0, a2 = − 12k2

c(cL− 1)
,

b0 =
1

c2L− c
− 4

c
k2(m2 − 2), b1 = 0, b2 = −12k2

c
.

(62)

From this it follows that the exact periodic solution of the system of equations
(46) can be determined in the case of cL − 1 ̸= 0, c ̸= 0. Thus, substituting the
found value (62) in (47), we find the solution of the system, equation (48) in the
form

i = − 12k2

c2L− c
dn2ξ,

v =
1

c2L− c
− 4

c
k2(m2 − 2)− 12k2

c
dn2ξ.

(63)

or

i(x, t) = i(k(x− ct)) = − 12k2

c2L− c
dn2(k(x− ct)),

v(x, t) = v(k(x− ct)) =
1

c2L− c
− 4

c
k2(m2 − 2)− 12k2

c
dn2(k(x− ct)).

(64)

at

cL− 1 ̸= 0, c ̸= 0.

So, it’s proven.
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Theorem 9. Let all the coefficients of the system of equations (48) be non-zero,
in addition cL− 1 ̸= 0, c ̸= 0.

Then the system of equations (46) has an exact periodic solution of the form
(64).
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