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MEAN-SQUARED APPROXIMATION OF COMPLEX
FUNCTION BY FOURIER SERIES WITH ORTHOGONAL
SYSTEM IN THE WEIGHTED BERGMAN SPACE WITH

JACOB’S WEIGHT

MUQIM SAIDUSAINOV

ABSTRACT. Let A(U) is the set of analytic functions f in a unit disk of U :=
{z:|z| <1} BéT,)Y and Bér)ﬂ, r € Z4 are classes of functions f € A(U), where
’ 5

Ve

£ r € N belongs to welghted Bergman space correspondmgly with a weight
~ and Jacobi weight 75 = |z|*(1 - [2])P o, 8 > —1; ’H s (@>0,8>-1)

be the class of functions B( )ﬁ, satisfying the condltlon ||f(7)|| L <1l In
this paper we study the problem on finding the sharp values of mean squared

(r)

approximation of functions f € B 8 and their simultaneous derivatives

F& 1<s<r—1,r >2)in the metrlc of space B PR We prove the
sharp Jackson-Stechkin type of inequality connecting the best mean squared
approximation of f € B< >B and Peetre functional.

1. Introduction. Preliminaries

We study mean-squared approximation of Fourier sums of complex functions
f regular in a simply connected domain D C C and belonging to the weighted
Bergman space Bs , := B3 (D), having finite norm

1/2

1
I£ll2a =17l = | 5 [[ 20Dl |

(D)

where ~(|z|) is positive weight function, do is the area element and, the integral is
in the sense of Lebesgue. In case of v(|z|) = 1, By, change into ordinary Bergman
space (see, for example, [1, p.259]). It is necessary to note, that in case of mean
approximation of complex functions in a simply connected domain D C C with
Fourier series orthogonally in D, by system of functions {¢(2)}72,, the problem
of seeking the sharp constants in Jackson—Stechkin inequality in B; ., were studied
in [2-6].
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We shall give the main facts and definitions formulated in [4]. It is well known
that the theory of mean-squared approximation of functions f over a domain
D C C is closely related to the theory of orthogonal functions over the domain.
A sequence of functions {yx(2)}72, is said orthogonal system with a weight ~ of
complex functions over the domain D C C if

o [ ez =

(D)

k#1, k€N,

= 1
57[/ (2Dlgn()Pdo = lell3e k=1 k€N
D

If
1/2

1
loulao = | 5 [[HDlonPas | =1,
(D)

then such system is called orthonormal. Obviously, if the system {¢g(2)}52, is
orthogonal, then {px(z) - H<Pk||2_}y}20:o is orthonormal system.
For the function f we associate its Fourier series in this orthogonal system

{en(2)} 2o
(2) =) a(f)er(2), (1.1)
k=0

) = g [ [ D
Y (D)

are Fourier coefficients of f. Let

where

Sn-1(f, 2) Zak (1.2)

be the nth partial sum of the series (1.1). Let us form a linear combination of first
n functions of the system {pr(2)}72:

Poo1(2) = > brpr(2), by € C, (1.3)

and the set of all generalized polynomials of form (1.3) we denote by P,_1.
The magnitude

En—l(f)2,'y = 1nf{Hf _pn—1||27'7 : pn—l(z) S Pn—l}

is called the best mean-squared approximation of function f € By, by subspace

Prn—1.
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MEAN-SQUARED APPROXIMATION OF COMPLEX FUNCTION BY FOURIER SERIES

Consider the case in which D C C is the unit disk U := {z € C: |z| < 1}.
In such case, the system of functions {z* 172, is orthogonal but not orthonormal,

since
1 k=l 1 2 ! k+I1+1 _i(k—1)t
7//7(|Z|)Z 5d0=§/ / v(p)p* e F Dt dpdt =
0 0
)

0, kE#L klcZ

1
/ Y(p)p**tdp ==\ >0, k€.
0

Therefore the system of functions

PHOES {(\/ﬁ)_1 : z’“}oo

k=0

will be orthonormal system. By A(U) we denote the class of analytic functions
in a disk U. Now let f be an arbitrary function from class A(U). The Maclaurin
series of this function has the form

= ch(f)zk. (1.4)
k=0

The Fourier coefficients ay(f) of function f and Maclaurin coefficients ¢k (f) are

connected by
ak = Ck \/ ks keZ (

1
Thus, Fourier series of functlon fe A( ) in the orthonormal system ¢} (%)
(\//\k)_l 2% (k € Z) with respect to (1.5) takes the form

—iak(f Z\/ick ( )_ z —ch . (1.6)

This series coincides with the Maclaurin series (1.4), the Fourier series f(z) inside
the disk U represent an analytic function (1.4) and for which is hold the closedness
equation

L // ENe |do—Z|ck e / (0P dp =3 Mles(HE. (17)
() k=0

In particular, if v(|z|) = 1 then from (1.7) follows the well-known equality (see,
for example, [1, pp.208-209])

o

)

i=I7= Z‘,Hl.

The equality (1.6) means that the Fourier series analytical in a unit disk U, con-
currently is Maclaurin series of this function and, according to Weierstrass’ theo-
rem [7, p. 107] can be differentiated arbitrary many times and, all differentiated
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series converge uniformly to the corresponding derivative. For any r» € N is hold

the equality
=D ()
k=r
where for brevity, we set
gri=k(k—=1)---(k—r+1)=k/(k—7), E>r, k,reN.

Through 52 T E Z,r > s we denote the set of functions f € By, for which

) e By, ie. ||f(r)||2,.y < oo. It is clear that for any ¥ > n > r, k,n € N|
re Z+

FD() = ST (f.2) = FO(2) = Sucra (F7), 2) Zamck b

so that we obtain

B2 ([ )2 = inf{||f< pﬁz"hnw  puo1(2) € Pt } =

1 (1.8)
=5 = S (PN, = D [ 2@
B s 1(f( )2,y = ||f(s) - Sn—s—l(f(s))ng,’y =
— Z O‘i,s|ck(f)|2 /01 ,Y(p)pz(k—s)ﬂdp. (1.9)
Further, through o
ps(y) = /01 Y(p)pSdp, s =0,1,2, ... (1.10)

we set the moment of order s of weight function (p) on segment [0, 1]. According
o0 (1.10), we write (1.8) and (1.9) in the forms

n r—1 (f(r)) Zakrlck | H2(k—r)+1> (111)
Brooa (£9), = 2 odslen(HPhag—sys (1.12)
’ k=n

2. The sharp upper bounds of simultaneous approximation

The problem on simultaneous approximation of functions and their derivatives
was studied relatively few, while for the best simultaneous polynomial approxima-
tion are under development. However, the extreme problems on best simultaneous
approximation of smooth functions by spline-functions and their corresponding
derivatives was studied by Korneichuk [8]. For the best simultaneous approxima-
tion by trigonometric functions was studied in [9] and for analytic functions in a
unit disk were studied in [10-12].
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MEAN-SQUARED APPROXIMATION OF COMPLEX FUNCTION BY FOURIER SERIES

In formulating the further results as a weight function, we will consider Jacobi
weight
vp) =7alp) = p*(L = p)’, @, > 1L
The following statement is valid

Lemma 2.1. Let k,n €N, r,s € Zy, k>n>1r > s, v3(p) = p*(1 — p)? a >0,
B> —1. Then

« _s B a? n—s £
max ke H2(k )+1(%/;) _ fns B )+1(%‘), (2.1)

2
k>n>r>s M2(k—r)+1(7) 0472,,,7« ug(n_r)+1(7£)

Proof. Obviously, that v2(p) is continuous for a, 3 > 0. In this case, it can
be easily proved that the equality (2.1) is true. Futhermore, (2.1) is hold for any
a>0,8>—1. Now set
Hage—s)+1(78)

fia(e—ry+1(78)

Let us show that for all k > n > r > s the function ¢(k,r,s) is decreasing. Since
fork>n>r

2
Qg r
o(k,rs) = ——
s 1y aiﬂ,

rek—-r)+2+a)l(B+1)
P@2k-r)+34+a+p) ’
I'2(k—s)+2+a)I'(B+1)
r2k—s)+3+a+p8) ’
where I'(a) is Euler’s gamma function, then using the formula
Fa+n)=(a+n—-1)a+n—-2)---(a+1)al(a)

we present ¥ (k,r, s) in the form

oty T@k-s)+2+a) TQk-r)+3+a+p)

QO(‘Z% T, 5) = 5

ap, T@k-s)+3+a+p) TEkI-7)+2+a)

We make the following ratio

p(k+1,7,8) O %, PRE+H1I—s)+2+a)

o(k, 7, ) o, of,, T@Ek-s)+2+a)
r2k-s)+34+a+8) TRKk+1-r)+3+a+p8) TQ2Ek-r+2+a)

T2k+1-5)+3+a+p8) TQRE-r)+3+a+p) TRE+1-r)+2+a)

Ha(e—r)+1(70) =

fo(k—s)+1(70) =

(k—r+1>2.(2(k'—s)+2+a)(2(k—s)+3+a)(2(k—r)+3+a+ﬂ)(2(k—r)+4+a+6)
k—s+1) Q2k-r+2+a)2k—1)+3+a)2(k—35)+3+a+8)2(k—s5)+4+a+p)

_(1 r—s )2 L+ r—s 1+ r—s "
B k—s+1 k— 144 3, «
r+ —|—2 k—r+§+§

<1 r—s 1 r—s

3 a+p a+

k— - k— 24+ ——
st5 s+2+—
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2

2
< (1_k7°<91> 1+La 1- — a+ B :f2(k77“78).
st Bortl+g k—st+2+ 20

2

To accomplish the equality (2.1), it is sufficient to prove that
g(k‘,T’,S) = f(k',’f’,S) -1<0

We write
g(k,r,s)<1H> 1+——% 1= r-s 1=
k—s+1 k—?“+1+§ k— +2+7;_B
1 1 1
g(k,T,S) = —(’/‘ - S) - [@] +
Fostl koryl4g k—s+2+—;6
1 1
(TS)2< —~ -
(k—s+1)<kz—r—|—1+§> (k—s+1)(k s+ ;B)
n . 1 — ) (r—a3)3 —
(kr+1+2)<k +2+2> (ks+1)(kr+1+2)<k +2+2>
Further
@ g(k,r,s)
(k—s+1)<k—r+1+2><k—s+2+ ) e
_ o atBY_ _ atBy
——<<k—r+1+2>(k— +24+ ) s+1< s+2+ )

—|—(k—s+1)(k—r—|—1+(;)>—(r—s)<(k 6)—(k—r+1—|—2)—|—

+(k5+1)> +(r—s)? = fk2+krfrs+r72k7ka+sgf§ _aath

a
X hs—1 =
9 g% g Ty ATy Ths

:—(k—l)Q—a<k—T;3+6+Z+ﬂ>—(2k+rs—kr—r—s)§

6
—(7‘—|—2)2—oz<7'+1—7‘++a+ﬂ> —@2r+2+r -t —r—r—r)=

4
= —r’—dr—4-a (1 + W) —24r=—1r?-3r—6-a (1 + W) <0
The condition f(k,r,s) < 11is hold and ¢(k,r,s) < ¢(n,r,s) for k >n >r > s.
Lemma is proved. O

Relying on Lemma 1, we state the following theorem.

57



MEAN-SQUARED APPROXIMATION OF COMPLEX FUNCTION BY FOURIER SERIE

Theorem 2.2. For allk >n >r >s>1and a > 0,8 > —1 it is hold the
equality
Enfsfl(f(s))gﬁg Qs
sup = .
fEB(T) En—r—l(f(r))z,yg On,r

a

N2(n—s)+1(’y(€)
fo(n—ry+1(78)

Proof. If the function f € Bégﬁ, then using Lemma 1 and equalities (1.11)
and (1.12) we have
} <
B

E, 1(f(s) ,75 = Zakr|ck )7 H2(k— r)+1(7§){
k=n
< max ai,s H2(k—s)+1 %4) Za |c | i (7 )
= — T 3. k,rICk 2(k—r)+1Va) =
k>n>r>s ak:,r M2(k r)+1(7§

a%s M2 —s)+1(7a)
= 2’ ’ . B E727, r— 1(f(r))27—yg' (23)

QX M2(n7r)+1(7a)
Since the inequality (2.3) is true for any function f € B, s, then from (2.3) we

2
A tah—rys1 (V)

obtain upper bound for the left side of equality (2.2)

sup ETQL s— l(f(s))27—y§ < 04727,73 ) M2(nfs)+1(’7g).
fezs(” En o (") T 0% a1 (V8)

(2.4)

To obtain the lower bound of this magnitude, we will consider the function
fo(z) = 2" € By _s,n € N,v € Zy,n > r. For this function from (1.11) and
(1.12) it follows at once that

E’,f s—1 ( éS))Qﬂ{ﬁ = Oégl,s /-‘2(n—s)+l(ryg)v (25)

Ve

B2, 1 (£7), =k maw-na (D). (2.6)

Ve

Given the equalities (2.5) and (2.6), we obtain the lower bound of magnitude (2.2)
En s— 1(f)2 ’Ya

sup >
feB(T) n r— l(f( )
2,"r
(2.7)
i)
> nes—1 /0 2,48 _ 04721,5 ) N2(n—s)+1(7g)
E727. r— 1( 0(7)) s a’rth /-1/2(77477")+1('yc€)
2 %a

By comparing the upper bound (2.4) with lower bound (2.7), we get (2.2). This
conclude the proof of Theorem 1. O

Corollary 2.3. [4] Under Theorem 1 condition, for s =0 and alln € N, r € Z,
n > r is true the equality

En71<f)2’,yg 1
sup =

fEB(T) En r— 1(f( ))2’,\/5 Qo

M2n+1(’75)
La(n—r)+1(75)

(2.8)
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Corollary 2.4. [5] Under Theorem 1, for « = 8 = 0,s = 0 and all n € N,
r € Zy, n > is true the equality

E,_ 1 — 1
sup 1(f22) = 4/ nort . (2.9)
fEBgT) En—r—l(f r )2 Qo n+ 1
Let H(T) (¢ > 0,8 > —1,r > s) is the set of functions f € B( ") for which
||f(r)|| B < 1. We seek the value

Bt (M) = (s £ W}

Theorem 2.5. Letne N, reZ,,n>r>s,a>0,3>—1. Then

NZ(n—s)+1 (’Vg)
f(n—r)+1(78)

(2.10)

Proof. Since E,_,_1(f"), IS £, ¢ < 1, then for arbitrary function

fe ’H;Tiﬂ from (2.2) follows that

Lo(n—s)+1(78)
,U/Q(n—r)—o—l (’75)

Qnp s

5

IN

)

8
H2(n—s Vo r Qo
2(n—s)+1( [3) B (f< )>2 < Ons

Qn,r ,U/Q(n—r)+1(7a)

)

whence passing to upper bounds over functions f € " Pyﬁ we write

B
E, (%(r) )S Qn s ) MQn-i—l('Ya)B . (211)
Qn,r Ho(n—r)+1(Va)
On the other hand, for function
Qs o
filz) = ==~ R
wr M2(n—r)+1(7a)
B
E,_ . 1(f1) e _ Ops M2(nfs)+1(’7;)’ (2.12)
An,r /‘Z(n—T)+1('Ya)

and according to (1.11) we have
En—r— ( (7)> = 1
i 2,48

The last equality means, that f; € ’H [3, therefore considering (2.12), we write
the lower bound estimation

Ho(n—s)+1(78)
H2(n—r)+1 (’Yg)

Qn,s

En—s—l (H(T‘) ) > En—s—l(fl)Q_’,Yg = (213)

Qo
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MEAN-SQUARED APPROXIMATION OF COMPLEX FUNCTION BY FOURIER SERIES

The required equality (2.10) is obtained by comparing the upper bound (2.11) and
lower bound (2.13). The Theorem 2 is proved. O

3. Peetre K-Functional in B;mzs

In this section we shall prove one extreme problem on finding the sharp val-
ues of upper bound that is related with the best simultaneous approximation
E,.1(f (S))Qmﬁj and Peetre K-functional. The definition and basic properties Pee-
tre K-functional are given in [13,14]. The direct and inverse theorems of the theory
of approximation by means of K-functional were proved in [15]. We define the K-
functional constructed by the spaces B2,vf3 and B;:é, meN, a>0,8>—-11in
the following form

Kn(f:™) 0 1= K (3473 B, 5 B ) =
(3.1)
= inf {IIf = gll,e + "9, 0 g€ B} 0 <t <1

fe"

Theorem 3.1. Letm,n e N, r,s € Z, andn>r>s,n>r+m,a>0,5>—1.
Then there is hold the following extreme equality

[

(an,r/an,s) . Enfsfl(f(s))gﬁg (M2(nfr)+1(75)/”2(nfs)+1(’yg))

sup =1. (3.2)

1
(r) — 2
fEBQ"Y Icm <f(7‘)’ anir,m I:.uQ(n—T')-i-l(’-Yg)/luﬁ(n—r—m)—i-l(Vg):| >
2

F&Pr B

Yo

Proof. Using the inequality (2.3), for arbitrary function f € Bér’)yﬁ, r € N, we
hold o

1
B 2
Qnp s M2(n75)+1( a) (r)
En—s—l(f) B S . ( : En—r—l(f ) B S
2y Ty, ﬂ2(n—r)+1(7£) 2%
8\ 2
On,s H2(n—. +1(7a) r
< One. ( (=910 ) N = S e a ()l (33)
Qn,r H2(n—ry+1(Ya)

where S,,_._1(f) is a partial sum of (n — r)th order of an arbitrary function
g€ BS:L. From (1.8) and (2.4) we have
g — Sn—r—l(g)Hzﬁg =
1 < /L2(n—r)+1(75) )2 H (m)H (34)
. . g ﬂ .
2,7

,U/Q(nfrfm)+1 (’Yg)

— n_r—l(g)Q,’yg S AOp—rm
-,

It now follows from inequalities (3.3) and (3.4) that

1
B (f) < Oén’S. M2(nfs)+1('75) 2_ Hf(r) _ H
n—s—1 2,48 = B 9 2

Qn,r ,u2(n—r)+1( a)

= Socrs @l <

)
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1
< an,s. </‘2(ns)+1(7£)> ’ Hf(r) o gH + 1 ) ( MZ(n7T)+1(7a) > H (m)
T e \ piagn—ry+1(74) 208 Qn—ran \ a1 (78)

(3.5)
Since the left side of inequality (3.5) not depend from function g € B(m) then

passing to lower bound over such functions in both parts of (3.5) with respect to
the definition of K-functional (3.1) we obtain

En—s—l (f)g’,yg S

1
< Qn.s <M2(ns)+1(’7g)> : K., f(r), 1 _ [ Mz(n—r)ﬂ(%g) ]

[N

Anp \ fin(nry+1(74) Qnrim | Ha(n—r—m)+1(7) 2P
From where follows the upper estimation of the left side of (3.4):
1
Qp r/Op s 'En—s— —r g — g 2
sup (anr/on,s) 1(F)ap (H200-r)+1(98)/ 12(n—5)+1(72)) <1 (36)

1
(r) — 2
fEBz,»yg Km (f(T)a anir,m [NQ(nfr)ﬁLl('Yg)//@(nfrfm)jtl('yg)] 2)
2

fEP: 5

Ve

To obtain the lower estimation of the same magnitude, we use that for any
arbitrary p, € P, is hold an inequality (see., for example, [6])

Mg} . (3.7)

Ko (s ™)y 5 < min{npnnw

We consider the function fy(z) = 2™ for which

ér+m)(z) =nn—-1)---n—r+n-r)--(n—r—m+1)"7""" =
n—(r+m)

= Onr* Op_rm? )

then by inequality (3.7) we have

1
K, for)7 1 [ fa(n—r)+1(74) r <
On—r,m ,u2(n7r7m)+1(7§) -
1 Ve
1 l fa(n—ry+1(7E) ] Hfr+m)H _
Unrm | fa(n—r—m)+1(75) ’ 274

Nl

1 [ ta(n—r)+1(75)

= 3 ‘| Qppr * Op—pm [NQ(n—r—m)—&-l(FY(g)} =
M2(n7r7m)+1('ya>

Op—rm

= Qnr M2(n—r)+1(’75)~ (38)
Notice also that
By s ( (SS))2 = Qn,s Mg(n75)+1(’}/g)~ (39)
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MEAN-SQUARED APPROXIMATION OF COMPLEX FUNCTION BY FOURIER SERIES

Using the (3.8) and (3.9) we get:

1

(anﬂ”/an,s) . En—s—l(f)Qﬁg (IU’Q(TL—T)-‘Fl(75)/#2(71—5)-&-1(7(6)) :
1
2

sup >
() . —
fEBQ’ﬂ/g ICm (‘]"(7)7 O(nir,"m |:M2(n7r)+1(Vg)/MQ(nfrfm)Jrl(’yg)i| )
reP: 2,48
5 5Y)?
(an,r/an,s) . Enfsfl(fO)Q,,yg (,U/Z(nfr)Jrl(7&)/“2(n75)+1(7a)) 2
> sup . =1
(r) — 2
feBMQ ’Cm <f(r), O‘ninm |:H2(n—r)+1(r}/g)/luﬂ(n—r—m)—i-l(ryg):| )
1ePr 2,98
(3.10)

The required equality (3.2) we obtain by comparing the upper estimation (3.6)
with a lower estimation (3.10). The Theorem 3 is proved. Note that if we put in
Theorem 3 s = 0 and 72(p) = 1, then we obtain the result which is proved in [16].
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