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Abstract. The solution of the direct problem of geothermia under sedimen-
tation conditions for geothermal reservoirs is considered. The main factors

forming the thermal field of sedimentary basins are taken into account in the

most complete way — it is the expenditure of heat flow energy on the base
for heating of cold sedimentary material, partial shielding of heat flow due to

the difference of thermophysical sediments and base rocks, heat generation
in accumulating sediments, different rate of sedimentation. The problem of

calculating the value of heat flux from the foundation based on temperature

observations in wells — the inverse problem of geothermy in sedimentation
conditions — has also been solved.

1. Introduction

Geothermal problems can be described by mathematical models, i.e., some set
of partial differential equations together with initial and/or boundary conditions
defined in a particular domain. Models in computational geothermal quantita-
tively predict what will happen if the crust and mantle deform slowly over ge-
ologic time, often with complications in the form of simultaneous heat transfer
(e.g., thermal convection in the mantle), phase changes in the Earth’s deep inte-
rior, complex rheology (viscosity, plasticity, non-Newtonian fluids), melting and
migration of melts, chemical reactions (e.g., thermochemical convection), motion
of solid, lateral forces, etc. A mathematical model relates the causal characteris-
tics of a geothermal process to its consequences. The causal characteristics of the
simulated process include, for example, the parameters of the initial and bound-
ary conditions, the coefficients, and the right side of the differential equations, as
well as geometric parameters, and areas of determination. The purpose of the
direct problem is to determine the relationship between the causes and effects of
the geothermal process, and therefore to formulate a mathematical problem for
a given set of parameters and coefficients. The inverse problem of geothermal is
the opposite of the direct problem. The inverse problem is posed when there is no
information about the causal characteristics, but there is information about the
effects of the geophysical (more specifically, geothermal) process. Inverse prob-
lems can be classified as follows: inverse time problems (e.g., to reconstruct the
development of a geodynamic process); coefficient problems (e.g., determination
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of coefficients, right sides of model equations), geometric problems (e.g., determi-
nation of the location of heat sources in a region or geometry of boundaries), and
many others. Inverse problems often turn out to be poorly posed or incorrect in
J. Hadamard’s terminology [1]. A mathematical model for a geophysical problem
should be well-established in the sense that it should have the properties of (1) ex-
istence, (2) uniqueness, and (3) stability of the solution of the problem. Tasks for
which at least one of these properties is not performed are called poorly defined.
If, for example, a problem does not have property (3), then its solution is almost
impossible to compute because the calculations are polluted by inevitable errors.
If the solution of a problem is not continuously dependent on the initial data, then,
generally speaking, the computed solution may have nothing to do with the true
solution. In the works of A.N. Tikhonov and his followers, methods for solving
incorrect problems are proposed. The essence of A.N. Tikhonov’s method is the
construction of regularizing families of problems, the solution of which in the limit
gives the solution of the initial incorrect problem [2]. The application of A.N.
Tikhonov’s method to a wide class of geodynamic problems is described in [3].

2. Formulation of the three-dimensional inverse problem of geothermia

Let’s D = {(x, y, t) : x ∈ [0, a], y ∈ [0, b] + t ∈ [0, t∗]}.
The boundaries of area D consist of the following three components

Γ1 = {(x, y, 0) : x(−[0, a]), y[0, b]},
Γ2 = {(0, 0, t) : t ∈ [0, t∗)},
Γ3 = {(a, b, t) : t ∈ [0, t∗)},

where the initial and boundary data are known.
In the field D we consider the heat conduction equation

∂u(x, y, t)

∂t
= d1

∂2u(x, y, t)

∂x2
+ d2

∂2u(x, y, t)

∂y2
, (x, y, t) ∈ D, (1)

where d1, d2-diffusion coefficients, u-temperature, t-time, u(x, y)-spatial coordi-
nates, respectively.

On the boundary of Γ1 the initial condition is set

u(x, y, 0) = φ(x, y), x ∈ [0, a], y ∈ 0, b. (2)

On the boundary of Γ2 the boundary condition is set

u(0, 0, t) = ψ(t), t ∈ [0, t∗]. (3)

In the inverse problem we study, the unknown functions are the temperature
distribution U(x, y, t) in the region D and the temperature θ(t) and heat flux q(t)
at the boundary Γ2, for which the Dirichlet and Neumann boundary conditions
are satisfied:

u(a, b, t) = θ(t), t ∈ [0, t∗] (4)

−k1
∂u(a, b, t)

∂x
− k2

∂u(a, b, t)

∂y
= q(t), t ∈ [0, t∗]. (5)

The initial mathematical description is augmented with temperature values at
some fixed points x = xp1

, y = yp2
where p ∈ (0, a), p2 ∈ (0, b).
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If the Green’s function G(x, y, t) of the problem is known

∂G(x, y, t)

∂t
= d1

∂2G(x, y, t)

∂x2
+ d2

∂2G(x, y, t)

∂y2
, (x, y, t) ∈ D,

G(x, y, 0) = 0, G(0, 0, t) = 1,

−k1
∂u(a, b, t)

∂x
− k2

∂u(a, b, t)

∂y
= 0,

then, in accordance with Duhamel’s principle, the solution of the problem (1-5) is
represented as

u(x, y, t) =

t∫
0

∂G(x, y, t− s)

∂t
u(x, y, s)ds, t ∈ [0, t∗). (6)

3. Method of regularization for integral equations of the first kind

The three-dimensional geothermal problem formulated in (2) admits a different
formulation using linear integral equations of the first kind

∞∫
−∞

∞∫
−∞

K(x− ξ, y − η)u(ξ, η)dξdη = f(x, y), (7)

where −∞ < x < ∞,−∞ < y < ∞, k(x− ξ, y − η) = k(ξ − x, η − y) = K(s, t)-is
the symmetric kernel of the equation, f(x, y) is the given function, u(ξ, η) is the
fast function.

When solving practical problems, integration in (7) is carried out only in finite
limits, i.e. we consider Eq.

Au ≡
a∫

−a

b∫
−b

K(x− ξ, y − η)u(ξ, η)dξdη = f(x, y), (8)

where −b ≤ x ≤ b,−a ≤ y ≤ a, A : H → H is a linear integral operator, H is a
valid Hilbert space. Naturally, the error of the transition from (7) to (8) must be
admissible. Let us assume that the numbers δ1 and δ1 characterize the accuracy
of the initial data f and the operator A in some chosen metrics. Moreover, for
finite limits of integration, we will assume that the function f is known in the
rectangle [−b, b] × [−a, a], and the function u outside this region is identically
zero, i.e., finite. Then the kernel K(s, t) = K(x − ξ, y − η) is defined in the
rectangle [−2b, 2b]× [−2a, 2a], but admits an extension to the plane R×R.

Problem (8) is incorrectly posed [4]. Let us see the regularizing algorithm of its
solution based on the method of M.M.Lavrentiev [5] and the fast Fourier transform
[6].

Let us consider the case when the operator A is a Hilbert-Schmidt operator,
i.e., when the kernel of equation (8) satisfies the condition

Au ≡
a∫

−a

b∫
−b

a∫
−a

b∫
−b

K2(x− ξ, y − η)u(ξ, η)dξdηdxdy <∞, (9)
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and the functions u(ξ, η) and f(x, y) belong to the two-dimensional Hilbert space
L2[−a, a;−b, b]. These conditions (subject to the observance of very non-rigorous
for practice constraints [2]) are fulfilled for many geothermal problems reduced to
equation (8).

Let’s establish some properties of the operator A. The following statement
holds.

Theorem 1. If the function K(x − ξ, y − η) satisfies the condition (9), then
A—compact linear operator in the space L2[−a, a; −b, b] and for its norm the
following estimates are true

∥A∥ ≤
(
4ab

2a∫
−2a

2b∫
−2b

K(s, t)dsdt + 2a

2a∫
−2a

2b∫
−2b

sK2(s, t)dsdt+

−2b

0∫
−2a

2b∫
−2b

tK2(s, t)dsdt − 2a

2a∫
−2a

2b∫
0

sK2(s, t)dsdt−

−2b

2a∫
0

2b∫
−2b

tK2(s, t)dsdt +

0∫
−2a

0∫
−2b

stK2(s, t)dsdt+

+

2a∫
0

2b∫
0

stK2(s, t)dsdt−
0∫

−2a

2b∫
0

stK2(s, t)dsdt −
2a∫
0

0∫
−2b

stK2(s, t)dsdt

)1/2

(10)

∥A∥ < 2

( 2a∫
−2a

2b∫
−2b

K2(s, t)dsdt

)1/2

. (11)

Theorem 1 is a generalization of a classical result from ([7]) to the case of
two-dimensional space L2.

The norms (10) and (11) generalize to the two-dimensional case of the norm
from ([7]).

Let us find the spectrum of the kernel K(s, t), i.e., let us perform for it a twofold
Fourier transform of the form

k(ω1, ω2) =
1

2π

∞∫
−∞

∞∫
−∞

K(s, t)exp[−i(ω1s+ ω2t)]dsdt. (12)

The corresponding inverse Fourier transform has the form

K(s, t) =
1

2π

∞∫
−∞

∞∫
−∞

k(ω1, ω2)exp[−i(ω1s+ ω2t)]dω1dω2. (13)

Clearly, if K(s, t) ∈ L2, then according to Plancherel’s theorem ([7]) the spec-
trum k(ω1, ω2) ∈ L2.

Theorem 2. For the integral operator A of convolution type with a symmetric
kernel K(s, t) to be positive in the Hilbert space L2[−a, a;−b, b] the integral operator
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A of convolution type with a symmetric kernel K(s, t) is positive, it is sufficient
that the kernel admits an extension from the region [−2b, 2b] × [−2a, 2a] to the
whole plane R × R and the spectrum of the kernel satisfies the condition 0 ≤
k(ω1, ω2) <∞.

Let’s give the scheme of the proof of the theorem. The condition of positivity
of the bounded self-adjoint operator A means that

(Au, u) ≥ 0 for any u ∈ L2[−a, a; −b, b]. (14)

The boundedness of the operator A follows from estimates (9) and (10). In a
real Hilbert space H, the operator A is self-adjoint due to the symmetry of the
kernel K(s, t). Let us write in expanded form the scalar product (14)

(Au, u) =

a∫
−a

b∫
−b

a∫
−a

b∫
−b

K(x− ξ, y − η)u(ξ, η)u(x, y)dξdηdxdy, (15)

for any u ∈ L2[−a, a;−b, b].
In the expression (15) we substitute the value K(s, t) = K(x − ξ, y − η) from

the formula (13) and reverse the order of integration. Taking into account that
by the condition of Theorem 2 the spectrum of the kernel satisfies the inequality
0 ≤ k(ω1, ω2) <∞, we obtain

K(Au, u) =
1

2π

∞∫
−∞

∞∫
−∞

k(ω1, ω2)|φ(ω1, ω2)|2dω1dω2 ≥ 0, (16)

where

φ(ω1, ω2) =

a∫
−a

b∫
−b

u(x, y)exp[−i(ω1x+ ω2y)]dxdy. (17)

Theorem 2 is proved. It generalizes to two-dimensional space the corresponding
statement from [7].

Note that for positivity of the operator A at a = ∞ and b = ∞ the following
conditions suffice

K(s, t) ∈ L2[−∞,∞;−∞,∞] and 0 ≤ k(ω1, ω2) <∞.

It follows from [6] that in the case of positivity of the operatorA, the regularizing
solution of the equation (8) is a solution of the following equation

a∫
−a

b∫
−b

K(x− ξ, y − η)u(ξ, η)dξdη + αu(x, y) = f(x, y), (18)

where α = α(δ1, δ2) > 0 is the regularization parameter chosen by the nonconvex-
ity method [6].

The solution of the equation (18) is obtained using the Fourier transform. Ap-
plying it to both parts of the expression (18) and using the convolution theorem
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[6], the function will have the following form

û(ω1, ω2, a, b) =
f̂(ω1, ω2, a, b)

2π(ω1, ω2) + α
, (19)

where û(ω1, ω2, a, b) and f̂(ω1, ω2, a, b) are Fourier transforms of the functions
u(x, y) and f(x, y), respectively, on the region [−b, b]× [−a, a].

The inverse transformation with respect to (19) gives an approximation to the
desired solution

u(x, y, a, b) =
1

2π

∞∫
−∞

∞∫
−∞

f(ω1, ω2, a, b)

2πk(ω1, ω2) + α
exp[i(ω1x+ ω2y)]dω1dω2, (20)

for which at δ1 → 0 and δ2 → 0 and increasing limits of integration is true

lim
α(δ1, δ2) → 0

a→ ∞
b→ ∞

u(x, y, α, β) = u(x, y), (21)

where u(x, y) is the exact value of the quantity being sought.
For practical realization of calculations by the formula (20), i.e., determination

of approximation to the solution, it is most rational to use computational Fourier
transform (b. p. F) schemes [8].

Let us write (20) in the form of a two-dimensional inverse discrete Fourier
transform [8]:

f̂(j1△x, j2△y) =

=
1

2π

N2−1∑
j2=0

N2−1∑
j1=0

f̂(p1△ω1, p2△ω2)exp[p1△ω1j1△x+ p2△ω2j2△y]x
2πk(p1△ω1, p2△ω2) + α

△ω1△ω2

(22)
where the expression for k(p1△ω1, p2△ω2) is obtained by computing the integral
(12) and the two-dimensional discrete Fourier transform

f̂(p1△ω1, p2△ω2) =

=
1

2π

N2−1∑
j2=0

N2−1∑
j1=0

u(j1△x, j△y)exp[−i(p1△ω1j1△x+ p2△ω2j2△y)]△x,△y

p1 = 0.1, ..., N1 − 1, p2 = 0.1, ..., N2 − 1. (23)

Assuming that △x = △y = 1, then △ω1 = 2π/N1 and △ω2 = 2π/N2. Substi-
tuting these expressions into (22) and (23), we obtain the final working formulas
realized by successive application of one-dimensional B.P.F. algorithms. When
solving problems for large arrays, the use of B.P.F. allows reducing the amount of
computation by two orders of magnitude compared to direct computation. For
example. If N1 = 2m1 and N2 = 2m2 , where m1 and m2 are some natural
numbers, then to perform computations (23) using b.p.F. requires approximately
N1N2(m1+m2) complex multiplications and additions instead of N1N2(N1+N2)
of the same operations in direct computations. Similar questions were analyzed in
[9], [10], [11].
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4. Conclusion

A further direction of research will be the development of methods for re-
constructing land surface temperature from temperature profile measurements in
boreholes for glaciers and rocks with constant environmental properties. Surface
temperature reconstruction will be proposed in the form of a piecewise constant
function and in the form of a segment of trigonometric Fourier series.
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