
THE EXACT WAVE PERIODIC SOLUTIONS FOR SOME

GENERALIZED BUSSINESQUE EQUATIONS WITH CONSTANT

DEVIATING ARGUMENTS

MAMADSHO ILOLOV AND DZHUMABOY SAFAROV

Abstract. In this paper, the exact periodic solutions for some generalized

Businesque equations with constant deviating arguments are found by the
method of decomposition by the elliptic Jacobi function. In the case when

not all deviating arguments are multiples of the solution periods, the exact

solutions are found using the delta amplitude function dnξ, and the modulus
of the function is calculated.

In nonlinear problems of mathematical physics, an important role is played by
finding exact solutions of nonlinear wave equations. Recently, a number of methods
for finding exact periodic solutions of nonlinear wave equations have been proposed
[1-6].

In [2, 4, 6], exact periodic solutions by the ℘− method of the Weierstrass
function for the generalized KdF equation and the Kuramato-Sivashensky equation
were obtained.

Consider on the plane of variables x, t a fourth order partial derivative equation
with deviating arguments

∂2u

∂t2
− c20

∂2u

∂x2
+ (α1 − α2u(x, t− τ)u(x, t))

∂3u

∂x3
− α

∂4u

∂x4
−

−γ1

(
∂u

∂x

)2

− γ2u(x+ θ, t)
∂2u

∂x2
= 0, (1)

where c0, α1, α2, τ, α, γ1, γ2, θ− are real constants, u(x, t)− is the desired function.
When α1 = α2 = 0, θ = 0, γ1 = γ2 = 2β, equation (1) becomes the Businesque

equation [1]

∂2u

∂t2
− c20

∂2u

∂x2
− α

∂4u

∂x4
− β

∂2u2

∂x2
= 0. (2)

Date: Date of Submission February 05, 2024 ; Date of Acceptance February 07, 2024, Com-
municated by Mamadsho Ilolov.

2000 Mathematics Subject Classification. Primary 35a09; Secondary 35B36.

Key words and phrases. Jacobi elliptic function, wave solution, deviating arguments.

 Journal of Applied Data Analysis and Modern Stochastic Modelling
Vol. 1 No. 2 (December, 2024)   
 
 
Received: 25th July 2024       Revised: 30th September 2024       Accepted: 18th November 2024  

94



MAMADSHO ILOLOV AND DZHUMABOY SAFAROV

In [1], the exact wave solution of equation (2) was found by the elliptic Jacobi
function expansion method using the functions sn2ξ, cn2ξ, ξ = k(x− ct)

u(x, t) =
c2 − c20
2β

+
2

β
(1 +m2)αk2 − 6m2

β
αk2sn2(k(x− ct)) =

=
c2 − c20
2β

− 2

β
(2m2 − 1)αk2 +

6m2

β
αk2cn2(k(x− ct)), (3)

here m2, 0 < m2 < 1 the modulus of the elliptic Jacobi function.
Note that the Jacobi functions snξ, cnξ, dnξ are related by the relations

sn2ξ + cn2ξ = 1, dn2ξ +m2sn2ξ = 1 (4)

and satisfy, respectively, the differential equations(
dsnξ

dξ

)2

= (1− sn2ξ)(1−m2sn2ξ), (5)(
dcnξ

dξ

)2

= (1− cn2ξ)(m′2 +m2cn2ξ), (6)(
ddnξ

dξ

)2

=
(
1− dn2ξ

) (
dn2ξ −m′2) , (7)

m′− is additive modulus, m2 + m′2 = 1 and 0 < m < 1, 0 < m′ < 1. These
functions are bounded

−1 ≤ snξ ≤ 1, −1 ≤ cnξ ≤ 1, m′ < dnξ ≤ 1.

It follows from equations (5)-(7) that the functions snξ, cnξ, dnξ are partial
solutions of some equation of the Duffing kind [7]

d2φ

dξ2
+ aφ(ξ) + bφ3(ξ) = 0, (8)

when ab < 0 or ab > 0 and a, b− will be dependent on m2,m′2.
The Duffing equation (8) is of importance in nonlinear mechanics, chaos theory,

biology, etc. [7].
Exact solutions of the generalized Duffing equation with constant deviations of

the argument are studied in [8-11]. The case when the constant deviations of the
argument are multiples of the periods of the solution of the equation or are not
multiples is investigated. Moreover, interesting results are obtained in the second
case. Now replacing in (3) m2sn2ξ by 1− dn2ξ by formula (3), we obtain another
solution of equation (2)

u(x, t) =
c2 − c20
2β

− 2

β
(2−m2)αk2 +

6

β
αdn2[k(x− ct)]. (9)

It is known that the modulus m2, 0 < m2 < 1 is an element of the construction
of elliptic Jacobi functions [7]. In this paper we will show that when the deviations
τ and θ are related to the elliptic integral

K(m) =

∫ π
2

0

(
1−m2sin2φ

)− 1
2 dφ,
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the solution of equation (1) can be found using the function dnξ and the modulus
m2 is exactly calculated using its coefficients.

For this purpose, as in [1], we will look for the solution of equation (1) in the
form

u(x, t) = φ(ξ), ξ = x− ct, (10)

where the constant c− is the wave parameter.
Substituting (10) into equation (1) for the function φ(ξ), we obtain an ordinary

differential equation with divergent arguments of the form(
c2 − c20

) d2φ
dξ2

− [α1 − α2φ(ξ + cτ)φ(ξ)]
d3φ

dξ3
− α

d4φ

dξ4
−

−γ1

(
dφ

dξ

)2

− γ2φ(ξ + θ)
d2φ

dξ2
= 0. (11)

If φ(ξ) has period ω > 0 and θ is a multiple of period ω, then φ(ξ) also satisfies
the equation (

c2 − c20
) d2φ
dξ2

− [α1 − α2φ(ξ + cτ)φ(ξ)]
d3φ

dξ3
− α

d4φ

dξ4
−

−γ1

(
dφ

dξ

)2

− γ2φ(ξ)
d2φ

dξ2
= 0. (12)

Equations (11) and (12) with respect to the functional relation

φ(ξ + ω) = φ(ξ),

are functionally equivalent.
Now noting that the function dnξ satisfies the functional relation

dn(ξ +K)dn(ξ + 2K) = dn(ξ +K)dnξ = m′, (13)

where m′− is an additional modulus, m2 +m′2 = 1, we will look for the solution
of equation (11),(12) in the form of

φ(ξ) = Adn2ξ = Adn2
[
ξ,m2

]
, (14)

with unknown parameters A,m,m′, c.
Taking in equation (11),(12) Taking in equation (11),(12)

cτ = K(m), θ = 2K(m), γ1 = γ2 = 2β, (15)

substitute (14) in equation (12).
From the differential equation formula for the function dnξ, we obtain that the

function φ(ξ) represented by formula (14) satisfies differential equations of the
form

d2φ

dξ2
= −4Am′2 + 4(1 +m′2)φ− 6

A
φ2,

d3φ

dξ3
= 4(2−m2)

dφ

dξ
− 12

A
φ
dφ

dξ
,

d4φ

dξ4
= 4(2−m2)

d2φ

dξ2
− 12

A
φ′2 − 12

A
φ
dφ

dξ
. (16)

Now along a solution of the form (14), we will compare equation (12) with
equation (16) when conditions (15) are assumed in equation (12).
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Note that if the condition (15) is satisfied, equation (12) will take the form(
c2 − c20

) d2φ
dξ2

− [α1 − α2φ(ξ +K)φ(ξ)]
d3φ

dξ3
− α

d4φ

dξ4
−

−2β

(
dφ

dξ

)2

− 2βφ
d2φ

dξ2
= 0. (17)

Then considering condition (13) and substituting (16) into equation (17), we
conclude that a solution of the form (14) satisfies equation (17) if the coefficients
of equation (16),(17) are related by the conditions

α1 = α2A
2m′2, c2 − c20 = 4(2−m2)α, 12α = 2βA. (18)

From the system of equations (18) at c ̸= c0, we find

A =
6

β
α, m′2 =

α1β
2

36α2α2
, c2 = c20 + 4α+

α1β
2

9α2α
. (19)

If the condition α1α2 > 0, αβ > 0 and

4α > β

√
α1

α2
, (20)

Substituting the value m2 = 1−m′2 into the elliptic integral, we find the period
of the function dnξ

K = K(m) =

∫ π
2

0

(
1−

(
1− α1β

2

36α2α2

)
sin2φ

)− 1
2

dφ.

Thus it is true

Theorem 1. Let in equation (1) α1α2 > 0, γ1 = γ2 = 2β, αβ > 0 and condition
(20) is satisfied, then if the modulus of the function dnξ is calculated by the formula

m2 = 1− α1β
2

36α2α2

and constant deviations τ, θ such that

τc = K(m), θ = 2K(m),

then equation (1) admits a solution of the form

u(x, t) = φ(ξ) =
6

β
αdn2(x− ct).

Now consider an equation of the form

∂2u

∂t2
− c20

∂2u

∂x2
+ [α1 − α2u(x, t− τ)u(x, t)]

∂3u

∂x3
− α

∂4u

∂x4
−

−γ1u(x+ θ1, t)

(
∂u

∂x

)2

− γ2u(x+ θ2, t)u(x, t)
∂2u

∂x2
= 0. (21)

It is easy to see that when α1 = α2 = 0, θ1 = θ2 = 0 and γ1 = 6β, γ2 = 3β
this equation takes the form of

∂2u

∂t2
− c20

∂2u

∂x2
− α

∂4u

∂x4
− 6βu

(
∂u

∂x

)2

− 3βu2 ∂
2u

∂x2
= 0. (22)
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or
∂2u

∂t2
− c20

∂2u

∂x2
− α

∂4u

∂x4
− β

∂2u3

∂x2
= 0.

Equation (22) in traveling wave variables

u(x, t) = φ(ξ), ξ = x− ct, (23)

takes the form

(c2 − c20)
d2φ

dξ2
− α

d4φ

dξ4
− 6βφ

(
dφ

dξ

)2

− 3βφ2 d
2φ

dξ2
= 0. (24)

The solution of this equation will be found in the form

φ(ξ) = Adnξ +B = Adn[ξ,m2] +B, (25)

with unknown parameters A,B, c,m2,m′2.
Noticing that the function dnξ satisfies the differential equation

d2dnξ

dξ2
= (2−m2)dnξ − 2dn3ξ,

it can be shown that the function φ(ξ), represented by formula (25), satisfies the
following differential equations

d2φ

dξ2
= (2−m2)(φ−B)− 2

A2
(φ−B)3,

d3φ

dξ3
= (2−m2)

dφ

dξ
− 6

A2
(φ−B)2

dφ

dξ
,

d4φ

dξ4
= (2−m2)

d2φ

dξ2
− 12

A2
(φ−B)

(
dφ

dξ

)2

− 6

A2
(φ−B)2

d2φ

dξ2
.

(26)

Now along the solution of equation (25), comparing equation (26) with equation
(21),(24), we conclude that a function of the form (25) is a solution of equation
(24) if the coefficients of equations (24), (26) are related by the conditions

c2 − c20 = αk2(2−m2), 12α = 6βA2, 6α = 3βA2, B = 0.

From this system, we can only find the parameters A and c

c2 = c20 + α(2−m2), A2 =
2

β
α.

Then equation (22) or (24) at αβ > 0 admits solutions of the form

u(x, t) = φ(ξ) = ±
√

2α

β
dn(x− ct). (27)

We show that by using the solution (27), provided that the deviations τ, θ1, θ2
are multiples of the elliptic integral

K = K(m), 0 < m2 < 1,

we can find the solution of equation (21).
If in equation (21) the solution u(x, t) has on the variable x a period ω > 0,

and θ1, θ2 are multiples of ω and in the traveling wave variables ξ = x− ct

u(x, t) = φ(ξ) = φ(x− ct),
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function φ(ξ) has period ω > 0

φ(ξ + ω) = φ(ξ),

then φ(ξ) is a solution of the equation(
c2 − c20

) d2φ
dξ2

+ [α1 − α2φ(ξ + kcτ)φ(ξ)]
d3φ

dξ3
− α

d4φ

dξ4
−

−γ1φ(ξ)

(
dφ

dξ

)2

− γ2φ
2(ξ)

d2φ

dξ2
= 0. (28)

Taking in this equation γ1 = 6β, γ2 = 3β we will compare it with equation (24)
along a function of the form (27). Suppose that the deviations τ, θ1, θ2 are related
to the elliptic integral K = K(m) by the following conditions

cτ = K, θ1 = 2K, θ2 = 4K, 0 < m2 < 1.

Then, using the functional equation (13) for dnξ, we conclude that a function of
the form (27) satisfies the differential equation (28) if the coefficients of equations
(26), (28) are related by the conditions

α1 = α2A
2m′, c2 = c20 + α(1 +m′2), A2 =

2

β
α.

From this system when αβ > 0, α1α2 > 0 and

| α1β |< 2 | α2α |, (29)

we find

m2 = 1− α2
1β

2

4α2
2α

2
, m′2 =

α2
1β

2

4α2
2α

2
. (30)

Hence we have

Theorem 2. Let α1α2 > 0, γ1 = 6β, γ2 = 3β, β > 0, α > 0 condition (29)
be fulfilled in equation (21) and the moduli m2 and m′2 for the function dnξ are
calculated by formulas (30).

Then if the deviations τ, θ1, θ2 are such that

cτ = K(m), θ1 = 2K(m), θ2 = 4K(m),

K(m) =

∫ π
2

0

(
1−

(
1− α2

1β
2

4α2
2α

2

)
sin2φ

)− 1
2

dφ,

then equation (21) has solutions of the form

u(x, t) = φ(ξ) = ±
√

2α

β
dn2(x− ct),

moreover c = θ1
2τ , θ2 = 2θ1 and

θ21
4τ2

= c20 + α+
α2
1β

2

4α2
2α

.
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Now consider an equation with several constant deviating arguments of the
form

∂2u

∂t2
− c20

∂2u

∂x2
− α

∂4u

∂x4
− β

∂2

∂x2
[u(x, t− τ)u(x, t)] =

= α1u(x+ τ0, t) + α2

3∏
j=1

u(x+ τj , t) + α2

5∏
j=1

u(x+ θj , t). (31)

In traveling wave variables

u(x, t) = φ(ξ), ξ = x− ct,

equation (31) takes the form

(c2 − c20)
d2φ

dξ2
− α

d4φ

dξ4
− β

d2

dξ2
[u(ξ + cτ)u(ξ)] =

= α1φ(ξ + τ0) + α2

3∏
j=1

φ(ξ + τj) + α2

5∏
j=1

φ(ξ + θj). (32)

Let the function φ(ξ) have period ω > 0. Then if in equation (31) τ0 = τ1 =
θ1, cτ, τ2, θ2, θ2, θ3 are multiples of period ω, then φ(ξ) satisfies the equation

(c2 − c20)
d2φ

dξ2
− α

d4φ

dξ4
− β

d2φ2

dξ2
=

= φ(ξ + τ0)
[
α1 + α2φ(ξ)φ(ξ + τ3) + α3φ

3(ξ)φ(ξ + θ4)φ(ξ + θ5)
]
. (33)

Equations (32),(33) are functionally equivalent along the periodic function φ(ξ)

φ(ξ + ω) = φ(ξ).

The solution of equation (33) will be found in the form

φ(ξ) = Adn2ξ = Adn2[ξ;m2], (34)

with unknown parameters A, c,m2,m′2.
The function φ(ξ) has period 2K

φ(ξ + 2K) = φ(ξ), K = K(m),

and satisfies the functional equation

φ(ξ)φ(ξ +K) = A2m′2. (35)

We substitute (34) into equation (33), provided that cτ, τ2, θ3, θ4 are multiples
of 2K and

τ3 = K, θ4 = 3K, θ5 = 5K

and τ0− is an arbitrary number.
Under these assumptions, comparing equation (33) with equation (32) and con-

sidering the functional condition (35), we conclude that the function φ(ξ) by for-
mula (34) satisfies equation (33) if the coefficients of equations (33), (2) are related
by conditions

α1 + α2A
2m′2 + α3A

4m′4 = 0, 12α = 2βA, c2 − c20 = 4α(2−m2).
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From this system we determine A = 6α
β and substituting its value into the first

equation we find m′2 from the equation of degree four

α3

(
6α

β

)4

m′4 + α2α3

(
6α

β

)2

m′2 + α1 = 0. (36)

From equation (36), if the conditions α2α3 < 0, α1α3 > 0 and

| α2 |> 2
√
α1α3 (37)

we find the modulus of m′2 and m2 in the form

m′2 =
β2

36α2

(
− α2

2α3
+

√
α2
2

4α2
3

− α1

α3

)
, m2 = 1−m′2, (38)

and the condition must be fulfilled∣∣∣∣∣− α2

2α3
+

√
α2
2

4α2
3

− α1

α3

∣∣∣∣∣ < 36α2

β2
, (39)

0 < m′ < 1, 0 < m < 1.

Thus it is true

Theorem 3. Let α2α3 < 0, α1α3 > 0 in equation (31), conditions (37), (39) are
satisfied and the moduli m2,m′2 of the function dnξ are calculated by formulas
(38). Then, if τ0 = τ1 = θ1 and cτ, τ2, θ2, θ2, θ3 are multiples of 2K(m) and
τ3 = K(m), θ4 = 3K(m), θ5 = 5K(m), then equation (31) admits a solution of the
following form for any number τ0

u(x, t) =
6α

β
dn2(x− ct),

and the parameter c is calculated by the formula

c2 = c20 + 4α+ 4αm′2.

Consider an equation of the form

∂2u

∂t2
− c0

∂2u

∂x2
− α

∂4u

∂x4
− β

∂2

∂x2

[
u(x, t− τ)u2(x, t)

]
=

= α1u(x+ θ1, t)
∂u

∂x
+ α2u(x+ θ2, t)

∂u

∂t
. (40)

This equation in traveling wave variables

u(x, t) = φ(ξ), ξ = x− ct,

will take the form

(c2 − c20)
∂2φ

∂ξ2
− α

∂4φ

∂ξ4
− β

∂2

∂ξ2
[
φ(ξ + cτ)φ2(ξ)

]
=

= α1φ(ξ + θ1)
∂φ

∂ξ
− α2cφ(ξ + θ2)

∂φ

∂ξ
. (41)
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If the function φ(ξ) is a solution to this equation and has period ω > 0, and
the deviations cτ, θ1, θ2 are multiples of ω, then φ(ξ), also satisfies the differential
equation

(c2 − c20)
∂2φ

∂ξ2
− α

∂4φ

∂ξ4
− β

∂2φ3

∂ξ2
= (α1 − α2c)φ(ξ)

∂φ

∂ξ
. (42)

Equations (41) and (42) are functionally equivalent along the periodic function
φ(ξ) of period ω > 0, under the conditions assumed above.

Finding the solution of equation (42) in the form

φ(ξ) = Asnξ = Asn[ξ,m2], (43)

we can easily verify that φ(ξ) is the solution of the differential equation

d4φ

dξ4
= (1 +m2)

d2φ

dξ2
+

12m2

A2
φ

(
dφ

dξ

)2

+
6m2

A2
φ2 d

2φ

dξ2
. (44)

Now comparing equations (42) and (45) along a solution of the form (44), we
conclude that a function of the form (43) is a solution of equation (40) if the
coefficients of equation (42) and (44) are related by the conditions

α1 − cα2 = 0, c2 − c20 = 4α(1 +m2),
12m2α

A2
= 6β,

6m2α

A2
= 3β.

From this system, when c = α1

α2
, α2

1 ̸= c20α
2
2 α > 0, β > 0 and the condition

α+ c20 <
α2
1

α2
2

< 2α+ c20, (45)

find the modulus of m2

m2 =
1

α

(
α2
1

α2
2

− c20

)
− 1 (46)

and

A2 =
2m2α

β
.

Thus it is true

Theorem 4. Let in the equation (40) α > 0, β >, α1α2 > 0, α2
1 ̸= c20α

2
2 and

condition (45) is satisfied and the modulus of the function snξ, m2 in calculated
by formula (46). Then if the deviations τ1, θ1, θ2 are such that α1

α2
τ, θ1, θ2 are

multiples of 4K(m), then equation (40) has solutions of the form

u(x, t) = ±
√

2α

β
msn(x− α1

α2
t).

Note that similar solutions can be obtained using the function cnξ and dnξ,
and with different moduli.
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