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Abstract. This paper is the first attempt to apply the machinery a Leontief-

type equations with mean derivative to the processes of so called geometric
Brownian motion that is in use in mathematical model of economy and some

other applications.

Introduction

The notion of mean derivatives (forward, backward, symmetric and antisymmet-
ric) was introduced by Edward Nelson in 60-th in his construction of the so-called
Stochastic Mechanics, a version of Quantum Mechanics ([1, 2, 3]). After that, in
[1], as a slight modi

cation of some Nelson’s constructions, a new sort of mean derivative called qua-
dratic (it is responsible for the diffusion term of a process) was introduced so that,
strictly speaking, it became possible to find processes having given mean deriva-
tives. A lot of physical, economical and some other problems (besides Quantum
mechanics) that are described by equations with mean derivatives (see, e.g., [G]),
have been found.

In [4, 5], a new method for studying dynamically distorted signals in electronic
devices was developed based on algebraic differential equations called Leontief-
type equations. Later, in the works of G.A. Sviridyuk and his school, and some
other researchers (including the author of this paper) the noise was taken into
account, which was represented in terms of symmetric Nelson’s mean derivatives
(current velocities).

This paper is the first attempt to apply the machinery of mean derivatives and
Leontiev type equations to the processes of so called geometric Brownian motion
that in use in mathematical model of economy and some other applications.

We use Einstein’s summation convention on the sum by identical upper and
lower indexes: If some term has lower and upper indexes denoted by the same
letter, this means that the sum is conducted by this index from 1 to n equal to
the dimension of the space, although the sum symbol is omitted. Let us illustrate
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this by examples. The notation Bj
k = Aij

ki means BJ
K =

n∑
i=1

Aij
ki and Rj

k = aib
ijscs

means Rj
k =

n∑
i=1

n∑
s=1

aib
ijscs.

1. Some facts from matrix theory

Everywhere below we deal with processes, equations, etc., defined on some finite
interval [0, T ].

We deal with an n-dimensional linear space Rn, vectors from Rn and n × n
matrices. Let two n× n constant matrices L and M be given, where L is singular
and M is non-singular. An expression of the form λL + M , where λ is a real
parameter, is called a matrix pencil. The polynomial θ(λ) = det(λL+M) is called
the characteristic polynomial of the pencil λL+M . The pencil is called regular if
its characteristic polynomial is not identically zero. If the matrix pencil λL+M is
regular, then there exist non-degenerate linear operators P (acting from the left)
and Q (acting from the right) that reduce the matrices L and M to the canonical
quasi-diagonal form (see [6]).

In the canonical quasi-diagonal form, having chosen the desired order of the
basis vectors, in the matrix PLQ first along the main diagonal there is the d× d
identity matrix, and then along the main diagonal there are Jordan cells with zeros
on the diagonal. We denote the (n− d)× (n− d) matrix with Jordan cells by N .

In PMQ in the lines, corresponding to the unit matrix in L there is a certain
non-degenerate matrix J , and in lines, corresponding to Jordan boxes, there is the
unit matrix. Thus

(1.1) P (λL+M)Q = λ

(
Id 0
0 N

)
+

(
J 0
0 In−d

)
,

A non-degenerate pencil satisfies the rank-degree condition if

(1.2) rank(L) = deg(det(λL+M(t))).

If the pencil satisfies the rank-degree condition, then formula (1.1) takes the
form

(1.3) P (λL+M))Q = λ

(
Id 0
0 0

)
+

(
J 0
0 In−d

)
.

where J is non-singular, since B is also a non-singular matrix.

2. Preliminary information on mean derivatives

Consider a stochastic process ξ(t) in Rn, t ∈ [0, T ], defined on a certain proba-
bility space (Ω,F ,P) and such that ξ(t) is an L1-random variable for all t.

Each stochastic process ξ(t) in Rn, t ∈ [0, l], generates three families of the
σ-subalgebra of the σ-algebra F :

(i) the ”past” Pξ
t generated by the preimages of Borel sets from Rn under all

mappings ξ(s) : Ω → Rn for 0 ≤ s ≤ t;

(ii) the ”future” Fξ
t generated by the preimages of the Borel sets from Rn under

all mappings ξ(s) : Ω → Rn for t ≤ s ≤ T ;
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(iii) the ”presence”N ξ
t generated by the preimages of the Borel sets from Rn under

all mappings ξ(t).
All families are assumed to be closed, i.e., containing all sets with probability

0.
Strictly speaking, almost surely (a.s.) sample trajectories of the process ξ(t) are

not differentiable for almost all t. Thus, the “classical” derivative exists only in
the sense of generalized functions. To avoid using generalized functions, following

Nelson (see, e.g., [1, 2, 3]) we define the notion of mean derivatives. Denote by Eξ
t

the conditional expectation of ξ with respect to the “presence” σ- algebra N ξ
t .

Definition 2.1. (i) The forward mean derivative Dξ(t) of ξ(t) at time t ∈ [0, T )
is an L1-random variable of the form

(2.1) Dξ(t) = lim
∆t→+0

Eξ
t (

ξ(t+∆t)− ξ(t)

∆t
)

where the limit is assumed to exist in L1(Ω,F ,P) and ∆t → +0 means that ∆t
tends to 0, with ∆t > 0.

Definition 2.2. [See e.g. [7]] For an L1-stochastic process ξ(t), t ∈ [0, T ], we
introduce the quadratic mean derivative D2ξ(t), defined by the formula

(2.2) D2ξ(t) = lim
△t→+0

Eξ
t (

(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t
),

where (ξ(t+△t)− ξ(t)) is a column vector and (ξ(t+△t)− ξ(t))∗ is its conjugate,
i.e., a row vector, and the limit is assumed to exist in L1(Ω,F ,P).

It is easy to verify that for the Ito process ξ(t) =
∫ t

0
a(s)ds+

∫ t

0
A(s)dw(s) the

quadratic mean derivative takes the form D2ξ(t) = AA∗.
Let a(t, x) and α(t, x) be Borel measurable mappings from [0, T ] × Rn to Rn

and to S+(n), respectively, where S+(n) is the set of symmetric positive-definite
n× n matrices. We will call a system of the form

(2.3)

{
Dξ(t) = a(t, ξ(t)),

D2ξ(t) = α(t, ξ(t)),

a first-order stochastic differential equation with forward mean derivative.

3. Processes of geometric Brownian motion types

We deal with the following generalization of the so-called geometric Brownian
motion, namely with a process S(t) that satisfies the system of stochastic differ-
ential equations

(3.1) dSα(t) = Sα(t)aα(t)dt+ Sα(t)Aα
β(t)dw

β(t)

where wβ(t) are independent Wiener processes in Rn that together form a Wiener
process w(t) in Rn, a(t) is a vector in Rn, A(t) is a mapping from [0, T ] to the
space of linear operators L(Rn,Rn) and (Aα

β(t)) denotes the matrix of operator

A(t).
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The processes satisfying (3.1), arise in various stochastic models (e.g., in econ-
omy).

Suppose that the coordinates Sα of the solution of (3.1) are positive for all
t. Thus by the Ito formula the process ξ(t) = logS(t) = (logS1(t), . . . logSn(t))
satisfies the equation

(3.2) dξ(t) =
(
aα − 1

2
(Aα

βδ
βγAα

γ

)
(t)dt+Aα

β(t)dw
β(t)

since dwαdwβ = δαβdt (here δαβ is Kronecker’s symbol: δαα = 1, δαβ = 0 for
α ̸= β).

Analogously, from the Ito formula we derive that if a process ξ(t) satisfies (3.2),
the process S(t) = expξ(t) = (expξ1(t), . . . , expξn(t)) satisfies (3.1). Note that in
this case the coordinates Sα are positive.

Denote by B the symmetric positive semi-definite matrix AA∗ (where A∗ is the
operator conjugate to A as above) and by diagB the vector constructed from the
diagonal elements of matrix B. Note that Aα

βδ
βγAα

γ is the α-th element Bαα of

diagB. If a process satisfies (3.2), it also satisfies the following equation with mean
derivatives:

(3.3)

{
Dξ(t) = (a− 1

2diagB)(t)
D2ξ(t) = B(t)

or, equivalently

(3.4)

{
Dξ(t) + 1

2diagD2ξ(t) = a(t)
D2ξ(t) = B(t)

Let ξ(t) be a solution of equation (3.3) (or (3.4)). We call it the logarithm

of the process S(t) = expξ(t) = (expξ
1(t), . . . , expξ

n(t).We call such processes the
processes of geometric Brownian motion type. .

4. Main result

Here we use the material and notation from Section 1
Let L be a constant degenerate n×nmatrix andM be a constant non-degenerate

matrix such that the characteristic polynomial of the pencil λL+M is regular and
satisfies the rank-degree condition.

Let B(t) be a continuous positive definite matrix in Rn of the form

(4.1)

(
B(1)(t) 0

0 B(2)(t)−

)
where B(1)(t) is a continuous symmetric positive definite matrix in Rd and B(2)(t)
is a continuous symmetric positive definite matrix in Rn−d. Continuous vector
a(t) in Rn is a sum of vectors a(1)(t) in Rd and a(2)(t) in Rn−d. Recall that a(t) as
well all other processes are given on closed finite interval [0, T ] and so a(t), a(1)(t)
and a(2) are bounded.

We suppose that matrices L and M are translated to canonical form. Consider
the following stochastic equation with mean derivatives

(4.2)

(
Id 0
0 0

.

)
Dξ(t) =

(
J 0
0 In−d

)
ξ(t)−

∫ t

0

(a(τ)− 1

2
diagB(τ))dτ
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D2ξ(t) = B(t).

One can easily see that (4.2) is split into two independent equations

(4.3) Dξ(1)(t) = Jξ(t)−
∫ t

0

(a(1)(τ)− 1

2
diagB(1)(τ))dτ

D2ξ(t) = B(1)(t)

in Rd and

(4.4) 0 = ξ(2)(t)−
∫ t

0

(a(2)(τ)− 1

2
diagB(2)(τ))dτ

D2ξ
(2)(t) = B(2)(t)

in Rn−d.
It follows from (4.4) that ξ(2)(t) =

∫ t

0
(a(2)(τ) − 1

2diagB
(2)(τ))dτ in Rn−d and

so Dξ(2)(t) = (a(2)(t)− 1
2diagB

(2)(t)). Thus the logarithm of ξ(2)(t) is a processes
of geometric Brownian motion type.
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