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TWO-PERIODIC SOLUTIONS OF ONE NONLINEAR ELLIPTIC
SYSTEM OF EQUATIONS OF THE FOURTH ORDER IN THE
PLANE WITH CONSTANT DEVIATIONS OF THE ARGUMENT

D.S. SAFAROV AND O. ABDULWOHIDI

ABSTRACT. The paper gives an application of generalized elliptic Jacobi func-
tions snw(z), cnw(z), dnw(z) to finding solutions of one class of nonlinear el-
liptic systems of equations of the fourth order in the plane with constant
deviations of arguments, with Cauchy-Riemann operators 9z, 9, and Laplace
02, = 82, + 02, where the variables Z = z — iy, 2 = x + iy are considered
independent variables 205 = 0y + 0y, 20z = 0z — 10y.

Function w(z)— quasiperiodic homeomorphism of the Beltrami equation

(0,1) wr —qw: =0, g # 1.
satisfying the condition
(0,2) w(0) = 0,w(z 4 hj) = w(z) + hy,j = 1,2,

moreover Im(ha/h1) # 0, Im(ha/h1) # 0, Function w(z)— quasiconformally
maps any parallelogram of periods €2 in the plane C topped z0, zo+hi1, zo+
hi+ h2, zo+ h2 quadrilaterally Q' in the plane C., topped w(z0), w(z20)+
h1, w(Zo) + h1 + ho, w(Zo) + ho.

The studied equation, on the plane of homeomorphism C,,, is reduced to
a nonlinear ordinary differential equation of the fourth order with constant
deviations of the argument. In this case, the solution of the equation is
obtained as a bi-periodic solution with one unknown function.

Introduction

In nonlinear equations of mathematical physics an important role is played
by nonlinear wave equations having applications in many fields of science and
technology, such as fluid mechanics, optical fibers, plasma and elastic media, etc.
Therefore, much attention has been paid to finding explicit (exact) traveling wave
solutions of these equations. Several methods have been presented to obtain exact
solutions for many nonlinear wave equations, such as the Lie-Becklund transform
method [ 8, 21 ], the inverse problem method of scattering theory [ 1 ], the homo-
geneous balance method [20, 24], hyperbolic tangent expansion method [ 19, 25,
27 ], trial function method [ 10 |, Hirota bilinear method [ 9 |, Weierstrass elliptic
function method [ 7,13, 15 ], F— function expansion method [ 23 |, Jacobi elliptic
function expansion method [ 11, 16, 18 |, sine - cosine method [ 26].

Date: Date of Submission 20 July, 2025; Date of Acceptance 20 August, 2025, Communicated
by Mamadsho Ilolov .

2010 Mathematics Subject Classification. Primary 60H10; Secondary 60H30,60H99.

Key words and phrases. Dual-periodic solutions, nonlinear equation, elliptic Weierstrass func-
tions, elliptic Jacobi functions.

59



D.S. SAFAROV AND O. ABDULWOHIDI

In[7, 14, 17, 22 ] double-periodic solutions for some classes of elliptic systems of
second-order equations with Laplace differential operators 40z, = 0z, = Oy + Oyy
and Bitsadze differential operator 40;; = 402 = Opp — Oyy + 2i0yy. This finds
explicit formulas between the coefficients of the equation and the modulus of the
elliptic Jacobi functions k2, k% # 0,k # 1.

In this case we use differential equations for Jacobi functions on the plane C.

In [ 7,12, 13, 14, 15, 17, 28, 29] applications of the method of generalized p—
Weierstrass function to the solution of some classes of nonlinear elliptic systems
of equations of second and third order are given.

In this paper we will find an explicit solution to a nonlinear elliptic system of
fourth order equations in complex form [3], [ 4 ],[ 14 ]

Warzz+ 01 Wez+ oW, +azwsw, +auw(z+71) ) ws, = Brw(z+72)+Bow? (2)w(z+73),
(L.1)
where z = x + iy, Z = ¥ — iy— independent variables, 20z = 0, + ¢9y— Cauchy-
Riemann operator, 20, = 0, —i0y, 4Wzz = Opy — Oyyy +210,y— Bitsadze differential
operator, 4w, , = Opg—0yy—2104y, 4w,z = Oy +0,,— Laplace operator, o, 5;, T, —
constants, j = 1,4,5 = 1,2,k = 1,3, w = u + 19— the desired function.
We obtain the solution of equation (1.1) as a joint solution of two equations
with one unknown function w(z)

Wazz + 0 Wzz + W, + azwzw, + auw(z + 11wz, = 0, (1.2)

Brw(z + 72) + fow? (2)w(z + 73) = 0, (1.3)

1. The method of generalized elliptic functions of Weierstrass and
Jacobi

The concept of generalized elliptic function is given in [14], [ 29 ].
By a generalized elliptic function we mean a generalized bi-periodic, with peri-
ods hy, ha, Im(ha/h1) # 0 solution of the Beltrami equation w(z) [ 4 ]

wz — q(z)w, =0, (2.1)
representable in the form
w(z) = B(w(2), (2.2)
where ®(w(z)) is a doubly-periodic meromorphic function with periods hy, ho, Im(hy/h1) #
0. by w, w(z)— the principal quasiperiodic homeomorphism of equation (1.1) sat-
isfying the condition [ 12, 14, 29 ]
w(0) =0, w(z+hj) =w(z)+h;, j=1,2. (2.3)

and the constants iLl, ilz, as a functional depend on the doubly periodic function
q(z) with periods hq, hq, satisfying the condition |¢(2)| < go < 1,.

It is shown that at |g(2)| < ¢o < 1, equation (2.1) has a single one-leaf solution
satisfying the condition (2.3) [ 12, 14, 29 ].

Using this quasiperiodic homeomorphism, the generalized Weierstrass functions
are constructed [ 12 ], [ 29 |

((2) = ((w(2)), B(2) = p(w(2)),(2) = o (w(2)).
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We give applications of these functions and the construction of bipartite solu-
tions for a general uniformly elliptic system of first-order equations in the plane [
14 1, [ 29 ], and some nonlinear equations of first and second order, [15], [28].

The Weierstrass functions depend on two complex parameters and the periods
01,05 can be set arbitrarily with only one general condition I'm(fs, /61) > 0.

The Jacobi functions depend on only one complex parameter k, that is, the
modulus k2, which is an element of their construction. And the modulus k2, is a
single-valued function of the parameter 7, Im7 > 0, and k? # 0,k% # 1.

In the theory of modular functions [ 5 | it is proved that the equation

E*(1) = a,

at a # 0,a # 1 has a single solution 7, Im7 > 0. For each a # 0,a # 1 there is an
elliptic function snu, satisfying the differential equation [ 5 ]

7

(dflzu)Q — (1— sn?u)(1 — K?sn’u), (2.4)

u— complex variable.
The functions cnu and dnu are defined by the formulas

snu +cn? = 1,dn*u + k?sn’u = 1. (2.5)

Function snu— bi-periodic with periods 4K and 2iK’, cnu— periodically 4K and
2K + 2iK’, dnu— periodically 2K and 4:K’, where

K(k) = /01 [(1 — t2)(1 — k2t2)]71/2 dt, K'(k') = /01 [(1 B t2)(1 B k’ztg) —-1/2 "

moreover k2 € [1,00), k" € (—o0,0], [2].
Further, these functions at half-periods satisfy the functional equations [ 5]

snu-sn(u+K'") =1/k, cnu-en(u+K+K') = —ik' /k, dnu-dn(u+K) = k. (2.6)

Second and third order equations with operators 0z 5, and constant deviations of
the argument are studied in [17], [ 22], [ 28 ]. The solution is found using elliptic
Jacobi and Weierstrass functions [2], [ 5 ] depending on the fact that some constant
deviations are multiples of the period and others are multiples of the half-periods
of the solution.

2. Solving the equation (1.2)

When ¢— is a constant in the Beltrami equation (2.1), its basic quasiperiodic
homeomorphism is of the form

w(z) =z + ¢z gl # 1, (3.1)

and satisfies the conditions w(0) = 0,w(z+h;) = w(2) +0;,0; = h; +qh;,j =1,2,
whereby if I'm(ha/h1) # 0, then Im(62/61) # 0.

Biaxial-periodic solutions of equation (1.2) with periods hq, ha, Im(ha/h1) # 0,
we will look for in the form

w(z) = p(w) = ¢(z + ¢2), (3.1)
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where g— is a constant,|g|| # 1 and ¢(w) is an analytic function of the variable
w = z + ¢z, that is, ¢z = 0, and satisfies the Beltrami equation.

For the function w(z) to have periods hy, he, Im(hz/h1) # 0, in formula (3. 1)
the function w(z) has periods hy, he, Im(ha/h1) # 0, it is necessary and sufficient
that the function ¢(w) be doubly periodic with periods 0; = h; + qh;,j = 1,2,
and it follows from the condition ||q| # 1 that I'm(63/61) # 0

Inversely, if the function ¢(w) = ¢(z + ¢Z) has periods 61, 63, then the function
w(z) has periods of

1 - 1 _
hl = 1_7|q|2(91 — qel); h2 = 1_7‘q|2(02 — q92) (32)

Substituting (3.1) into (1.2), at 7y = 0, for the analytic function ¢(w), we obtain
the ordinary differential equation

oD (W) + (n? + 02)pP (W) + 036" (W) + (W) (W) =0,  (3.3)

When a3 = a4, this equation is the analog of the Boussinesq equation along
the wave solution [ 6 |

[0
PP @) + (0a® +az)p + T ()P =0 (3.4)

Following the works [14],[17],[22] we will look for the solution of this equation
in the form
o(w) = Asn’w + B = Asn?w; k%] + B, (3.5)
where the parameters A, B, k? # 0, 1— are unknown.
Calculating the derivatives of the function ¢(w) up to the fourth order, by
virtue of the differential equation for snw, (2.4), we obtain the following differential
equations for p(w) :

5 2

§ =145~ B) ~ 40+ K)o~ BY + (o - B).
2

o) =24~ 401+ K)(p ~ B) + (o B,

@) _ 12/ 122 B
o =41+ k%)¢" + 1 (o — B¢,

12k 12k?
90(4) _ _4(1+k2)§0”+7§0/2+ A (SD_B)QD/I
Since the derivative of o) contains all the lowest terms in equations (3.3),
(3.4), with a3 = ay, it suffices along a solution of the form (3.5) to compare these
equations with the equations for ¢*). More precisely, with the equations
12k2%¢% ,,  12k%¢?
A7 A
Comparing equations (3.2), at a3 = a4, with equation (3.7) along function
(3.6), we conclude that if their coefficients are related by the conditions

12k2
q2<p(4) - _ (4612(1 + k’2) + ABqQ) 90// + 8090” (3.6)

2 o o, 12E%
a1q” +az =41+ k%)q +TB¢1,
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12k2
a3q = qug = ———Bq’,
then function (3.5) satisfies equation (3.4).
From this system we find A and B
12k? 1
A=—-"1y¢ B=——J¢* +ay — 41 + k*)¢*. (3.7)
a3 azq
Thus at a3 = a4 equation (3.3) has a solution of the form
12k? 1
olw) =— qsn’w, k%] — —[a1¢® + az — 4(1 + k). (3.8)
a3 azq

In this formula, no other conditions are assumed on the constants k2, ¢> besides
the condition k? # 0,1,|q| # 1 yet. The conditions on k2, ¢? are found after
substituting (3.8) into equation (1.3).

In formula (3.8), replacing sn?w by 1 — cn?w and (1 — dn?w)/2, we obtain more
solutions of equation (3.4) in the form of

12K, 4(1-2k%)g g+ o

w) = cnw — - , 3.9
¢1(w) o ~ ond (3.9)
12 4(2 — k2 2
o (w) = ——qdn’w — ( Jo _ o+ a2 (3.10)
a3 a3 a3q

All functions of the form (3.8),(3.9) give equal rights to the solution of equation
(3.4), with periods 2K, 2iK’. In these formulas the constants k2 # 0,1 and |q| # 1.
Thus it is true

Theorem 2.1. Let 1y = 0,a3 = a4, and B1 = o = 0. Then if the modulus k- of
the elliptic functions and the constant q are such that k* # 0,1 and |q| # 1, then
equation (1.2) admits a biperiodic solution

w(z) = Asn*(z + ¢z, k*) + B,
where constants A and B are calculated by formulas (3.7), with periods

1

hy=—
1—1ql?

(2K — 2K), hy = (2K’ + 2K"). (3.11)

i
1—lqf?
3. Solution of the functional-difference equation (1.3)

When substituting (3.1), i.e. the formula

w(z) = p(w) = ¢(z +42) (4.1)
equation (1.3) with respect to the unknown function ¢(w) takes the form
Bro(w + 02) + Bap? (w)p(w +63) = 0, (4.2)

where 0y = 7o + qT2, 03 = 73 + qT3.
If 81 # 0, B2 # 0, then equation (4.2) always has a trivial solution

900((“}) = _i\/g7

and this solution also satisfies equation (3.3)
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Thus equation (1.1) always has a trivial, constant solution

. B
w(z) = —iy | =,
2 B2
for any values of 11, 7o, 73.

To obtain a solution to equation (1.1), we must find, along function (3.1), the
joint solution of equations (3.2) and (4.1)

Let us show that when in equation (1.1) (or (1.2), (1.3) the constant deviations
T1, Ta, T3. are related to the periods and half-periods of the functions snu, cnu, dnu,
then solutions of equation (4.1) can be obtained using functions of the form (3.8),
(3.9) and (3.10) for certain values of ¢ and k2.

This takes into account the properties ( 2.6 ) of the functions snu, cnu, dnu.

Let us show that a function of the form (3.8) as a solution of equation (1.2) at
71 = 0 satisfies equation (1.3) or (4.2) if in it B =0, i.e.,

a1¢* + ag — 41+ k?)g* = 0. (4.3)

This equation is satisfied e.g. if

k2= -1 and ¢® = ,;L? and |as| # |aa)- (4.4)

Then taking into equation (4.2)

0y =4K and 03 = K’
and substituting the function

1262
gsn-w

Yo = —
a3

when B =0 in (4.2) due to the equality

1
snw - sn(w+ K') = —

K’
we get
144k% 5 1
ﬂl""ﬁQ O% q F:O
Hence we find 84
144 , k*
B1=—Pf ?(I?Wo (4.5)
3

Thus, under condition (4.5) equation (4.2) has a nontrivial dual-periodic solu-
tion of the form
12k?
wo(w) = — ¢*sn’w
as
with periods 2K and 2iK’ if 05 = 2K and 63 = iK’.
The following is true
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Theorem 3.1. Let 31 # u By # 0 and k? # 0,k? # 1,— be a complex number
modulus function snu and a constant q,|q|| # 1 such that
a1® + ag —4(1 + k%)g*> = 0.
Then, under condition (4.5) equation (4.3) has a bi-periodic solution of the form
12k2

wp(z) = — o qsn®(z + qz).

with periods (3.11)

4. Solving the basic equation (1.1)

Now using the solution of equation (1.2) (Theorem 1) and equation (1.3)
(Theorem 2) we obtain the solutions of (1.1)

Theorem 4.1. Let the compler numbers q,k* be such that |q| # 1,k* # 0,k # 1
and k2 is the module of the elliptic functions snu cnu  dnu and let all the
coefficients of equation (1.1) be different from zero and oz = ay.

Let the deviations 71,72 be multiples of period hy and 753 = ha/2.
Then, if ¢, k? satisfy the equation

o1q” + oz +4(1+ k*)g* = 0,

and the condition

144k% , 1
B1=—P2 qu e
or y
144 k4
B = —Bzwq )
then equation (1.1) has a solution of the form
12k2
w(z) = gsn®(z + qz)
as

with periods hy, he- calculated by formula (3.11)
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