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Abstract. The paper gives an application of generalized elliptic Jacobi func-
tions snω(z), cnω(z), dnω(z) to finding solutions of one class of nonlinear el-

liptic systems of equations of the fourth order in the plane with constant

deviations of arguments, with Cauchy-Riemann operators ∂z , ∂z and Laplace
∂2
zz = ∂2

xx + ∂2
yy , where the variables z = x − iy, z = x + iy are considered

independent variables 2∂z = ∂x + i∂y , 2∂z = ∂x − i∂y .

Function ω(z)− quasiperiodic homeomorphism of the Beltrami equation

(0,1) ωz − qωz = 0, |q| ̸= 1.

satisfying the condition

(0,2) ω(0) = 0, ω(z + hj) = ω(z) + h̃j , j = 1, 2,

moreover Im(h2/h1) ̸= 0, Im(h̃2/h̃1) ̸= 0, Function ω(z)− quasiconformally

maps any parallelogram of periods Ω in the plane Cz topped z0, z0+h1, z0+
h1 + h2, z0 + h2 quadrilaterally Ω′ in the plane Cω topped ω(z0), ω(z0) +

h̃1, ω(z0) + h̃1 + h̃2, ω(z0) + h̃2.

The studied equation, on the plane of homeomorphism Cω , is reduced to
a nonlinear ordinary differential equation of the fourth order with constant

deviations of the argument. In this case, the solution of the equation is

obtained as a bi-periodic solution with one unknown function.

Introduction

In nonlinear equations of mathematical physics an important role is played
by nonlinear wave equations having applications in many fields of science and
technology, such as fluid mechanics, optical fibers, plasma and elastic media, etc.
Therefore, much attention has been paid to finding explicit (exact) traveling wave
solutions of these equations. Several methods have been presented to obtain exact
solutions for many nonlinear wave equations, such as the Lie-Becklund transform
method [ 8, 21 ], the inverse problem method of scattering theory [ 1 ], the homo-
geneous balance method [20, 24], hyperbolic tangent expansion method [ 19, 25,
27 ], trial function method [ 10 ], Hirota bilinear method [ 9 ], Weierstrass elliptic
function method [ 7,13, 15 ], F− function expansion method [ 23 ], Jacobi elliptic
function expansion method [ 11, 16, 18 ], sine - cosine method [ 26].
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In [ 7, 14, 17, 22 ] double-periodic solutions for some classes of elliptic systems of
second-order equations with Laplace differential operators 4∂z̄z = ∂z̄z = ∂xx + ∂yy
and Bitsadze differential operator 4∂z̄z̄ = 4∂2

z̄ = ∂xx − ∂yy + 2i∂xy. This finds
explicit formulas between the coefficients of the equation and the modulus of the
elliptic Jacobi functions k2, k2 ̸= 0, k ̸= 1.

In this case we use differential equations for Jacobi functions on the plane C.
In [ 7, 12, 13, 14, 15, 17, 28, 29] applications of the method of generalized ℘−

Weierstrass function to the solution of some classes of nonlinear elliptic systems
of equations of second and third order are given.

In this paper we will find an explicit solution to a nonlinear elliptic system of
fourth order equations in complex form [3], [ 4 ],[ 14 ]

wzzzz+α1wzz+α2wzz+α3wzwz+α4w(z+τ1)wzz = β1w(z+τ2)+β2w
2(z)w(z+τ3),

(1.1)
where z = x + iy, z̄ = x − iy− independent variables, 2∂z = ∂x + i∂y− Cauchy-
Riemann operator, 2∂z = ∂x−i∂y, 4wzz = ∂xx−∂yyy+2i∂xy− Bitsadze differential
operator, 4wzz = ∂xx−∂yy−2i∂xy, 4wzz = ∂xx+∂yy− Laplace operator, αj , βi, τk−
constants, j = 1, 4, i = 1, 2, k = 1, 3, w = u+ iϑ− the desired function.

We obtain the solution of equation (1.1) as a joint solution of two equations
with one unknown function w(z)

wzzzz + α1wzz + α2wzz + α3wzwz + α4w(z + τ1)wzz = 0, (1.2)

β1w(z + τ2) + β2w
2(z)w(z + τ3) = 0, (1.3)

1. The method of generalized elliptic functions of Weierstrass and
Jacobi

The concept of generalized elliptic function is given in [14], [ 29 ].
By a generalized elliptic function we mean a generalized bi-periodic, with peri-

ods h1, h2, Im(h2/h1) ̸= 0 solution of the Beltrami equation w(z) [ 4 ]

wz̄ − q(z)wz = 0, (2.1)

representable in the form

w(z) = Φ(ω(z)), (2.2)

where Φ(ω(z)) is a doubly-periodic meromorphic function with periods h̃1, h̃2, Im(h̃2/h̃1) ̸=
0. by ω, ω(z)− the principal quasiperiodic homeomorphism of equation (1.1) sat-
isfying the condition [ 12, 14, 29 ]

ω(0) = 0, ω(z + hj) = ω(z) + h̃j , j = 1, 2. (2.3)

and the constants h̃1, h̃2, as a functional depend on the doubly periodic function
q(z) with periods h1, h2, satisfying the condition |q(z)| ≤ q0 < 1,.

It is shown that at |q(z)| ≤ q0 < 1, equation (2.1) has a single one-leaf solution
satisfying the condition (2.3) [ 12, 14, 29 ].

Using this quasiperiodic homeomorphism, the generalized Weierstrass functions
are constructed [ 12 ], [ 29 ]

ζ̃(z) = ζ(ω(z)), ℘̃(z) = ℘(ω(z)), σ̃(z) = σ(ω(z)).
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We give applications of these functions and the construction of bipartite solu-
tions for a general uniformly elliptic system of first-order equations in the plane [
14 ], [ 29 ], and some nonlinear equations of first and second order, [15], [28].

The Weierstrass functions depend on two complex parameters and the periods
θ1, θ2 can be set arbitrarily with only one general condition Im(θ2, /θ1) > 0.

The Jacobi functions depend on only one complex parameter k, that is, the
modulus k2, which is an element of their construction. And the modulus k2, is a
single-valued function of the parameter τ, Imτ > 0, and k2 ̸= 0, k2 ̸= 1.

In the theory of modular functions [ 5 ] it is proved that the equation

k2(τ) = a,

at a ̸= 0, a ̸= 1 has a single solution τ, Imτ > 0. For each a ̸= 0, a ̸= 1 there is an
elliptic function snu, satisfying the differential equation [ 5 ](

dsnu

du

)2

= (1− sn2u)(1− k2sn2u), (2.4)

u− complex variable.
The functions cnu and dnu are defined by the formulas

sn2u+ cn2 = 1, dn2u+ k2sn2u = 1. (2.5)

Function snu− bi-periodic with periods 4K and 2iK ′, cnu− periodically 4K and
2K + 2iK ′, dnu− periodically 2K and 4iK ′, where

K(k) =

∫ 1

0

[
(1− t2)(1− k2t2)

]−1/2
dt, K ′(k′) =

∫ 1

0

[
(1− t2)(1− k′

2

t2)
]−1/2

dt.

moreover k2 ∈ [1,∞), k′
2 ∈ (−∞, 0], [2].

Further, these functions at half-periods satisfy the functional equations [ 5]

snu·sn(u+K ′) = 1/k′, cnu·cn(u+K+K ′) = −ik′/k, dnu·dn(u+K) = k′. (2.6)

Second and third order equations with operators ∂z,∂z and constant deviations of
the argument are studied in [17], [ 22], [ 28 ]. The solution is found using elliptic
Jacobi and Weierstrass functions [2], [ 5 ] depending on the fact that some constant
deviations are multiples of the period and others are multiples of the half-periods
of the solution.

2. Solving the equation (1.2)

When q− is a constant in the Beltrami equation (2.1), its basic quasiperiodic
homeomorphism is of the form

ω(z) = z + qz, |q| ̸= 1, (3.1)

and satisfies the conditions ω(0) = 0, ω(z+hj) = ω(z)+θj , θj = hj + qhj , j = 1, 2,
whereby if Im(h2/h1) ̸= 0, then Im(θ2/θ1) ̸= 0.

Biaxial-periodic solutions of equation (1.2) with periods h1, h2, Im(h2/h1) ̸= 0,
we will look for in the form

w(z) = φ(ω) = φ(z + qz), (3.1)
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where q− is a constant,|q|| ̸= 1 and φ(ω) is an analytic function of the variable
ω = z + qz, that is, φω = 0, and satisfies the Beltrami equation.

For the function w(z) to have periods h1, h2, Im(h2/h1) ̸= 0, in formula (3. 1)
the function w(z) has periods h1, h2, Im(h2/h1) ̸= 0, it is necessary and sufficient
that the function φ(ω) be doubly periodic with periods θj = hj + qhj , j = 1, 2,
and it follows from the condition ||q| ̸= 1 that Im(θ2/θ1) ̸= 0

Inversely, if the function φ(ω) = φ(z+ qz̄) has periods θ1, θ2, then the function
w(z) has periods of

h1 =
1

1− |q|2
(θ1 − qθ̄1), h2 =

1

1− |q|2
(θ2 − qθ̄2). (3.2)

Substituting (3.1) into (1.2), at τ1 = 0, for the analytic function φ(ω), we obtain
the ordinary differential equation

q2φ(4)(ω) + (α1q
2 + α2)φ

(2)(ω) + α3qφ
′2(ω) + α4qφ(ω)φ

2(ω) = 0, (3.3)

When α3 = α4, this equation is the analog of the Boussinesq equation along
the wave solution [ 6 ]

q2φ(4)(ω) + (α1q
2 + α2)φ

(2) +
α3q

2
(φ2(ω))(2) = 0 (3.4)

Following the works [14],[17],[22] we will look for the solution of this equation
in the form

φ(ω) = Asn2ω +B = Asn2[ω; k2] +B, (3.5)

where the parameters A,B, k2 ̸= 0, 1− are unknown.
Calculating the derivatives of the function φ(ω) up to the fourth order, by

virtue of the differential equation for snω, (2.4), we obtain the following differential
equations for φ(ω) :

φ′2 = 4A(φ−B)− 4(1 + k2)(φ−B)2 +
4k2

A
(φ−B)3,

φ(2) = 2A− 4(1 + k2)(φ−B) +
6k2

A
(φ−B)2,

φ(3) = −4(1 + k2)φ′ +
12k2

A
(φ−B)φ′,

φ(4) = −4(1 + k2)φ′′ +
12k2

A
φ′2 +

12k2

A
(φ−B)φ′′.

Since the derivative of φ(4) contains all the lowest terms in equations (3.3),
(3.4), with α3 = α4, it suffices along a solution of the form (3.5) to compare these
equations with the equations for φ(4). More precisely, with the equations

q2φ(4) = −
(
4q2(1 + k2) +

12k2

A
Bq2

)
φ′′ +

12k2q2

A
φ′2 +

12k2q2

A
φφ′′ (3.6)

Comparing equations (3.2), at α3 = α4, with equation (3.7) along function
(3.6), we conclude that if their coefficients are related by the conditions

α1q
2 + α2 = 4(1 + k2)q2 +

12k2

A
Bq2,
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α3q = α4q = −12k2

A
Bq2,

then function (3.5) satisfies equation (3.4).
From this system we find A and B

A = −12k2

α3
q, B = − 1

α3q
[α1q

2 + α2 − 4(1 + k2)q2]. (3.7)

Thus at α3 = α4 equation (3.3) has a solution of the form

φ(ω) = −12k2

α3
qsn2[ω, k2]− 1

α3q
[α1q

2 + α2 − 4(1 + k2)q2]. (3.8)

In this formula, no other conditions are assumed on the constants k2, q2 besides
the condition k2 ̸= 0, 1, |q| ̸= 1 yet. The conditions on k2, q2 are found after
substituting (3.8) into equation (1.3).

In formula (3.8), replacing sn2ω by 1− cn2ω and (1−dn2ω)/2, we obtain more
solutions of equation (3.4) in the form of

φ1(ω) = −12k2

α3
qcn2ω − 4(1− 2k2)q

α3
− α1q

2 + α2

α3q
, (3.9)

φ2(ω) = − 12

α3
qdn2ω − 4(2− k2)q

α3
− α1q

2 + α2

α3q
. (3.10)

All functions of the form (3.8),(3.9) give equal rights to the solution of equation
(3.4), with periods 2K, 2iK ′. In these formulas the constants k2 ̸= 0, 1 and |q| ̸= 1.

Thus it is true

Theorem 2.1. Let τ1 = 0, a3 = a4, and β1 = β2 = 0. Then if the modulus k2- of
the elliptic functions and the constant q are such that k2 ̸= 0, 1 and |q| ̸= 1, then
equation (1.2) admits a biperiodic solution

w(z) = Asn2(z + qz, k2) +B,

where constants A and B are calculated by formulas (3.7), with periods

h1 =
1

1− |q|2
(2K − q ¯2K), h2 =

i

1− |q|2
(2K ′ + q ¯2K ′). (3.11)

3. Solution of the functional-difference equation (1.3)

When substituting (3.1), i.e. the formula

w(z) = φ(ω) = φ(z + qz̄) (4.1)

equation (1.3) with respect to the unknown function φ(ω) takes the form

β1φ(ω + θ2) + β2φ
2(ω)φ(ω + θ3) = 0, (4.2)

where θ2 = τ2 + qτ̄2, θ3 = τ3 + qτ̄3.
If β1 ̸= 0, β2 ̸= 0, then equation (4.2) always has a trivial solution

φ0(ω) = −i

√
β1

β2
,

and this solution also satisfies equation (3.3)
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Thus equation (1.1) always has a trivial, constant solution

w(z) = −i

√
β1

β2
,

for any values of τ1, τ2, τ3.
To obtain a solution to equation (1.1), we must find, along function (3.1), the

joint solution of equations (3.2) and (4.1)
Let us show that when in equation (1.1) (or (1.2), (1.3) the constant deviations

τ1, τ2, τ3. are related to the periods and half-periods of the functions snu, cnu, dnu,
then solutions of equation (4.1) can be obtained using functions of the form (3.8),
(3.9) and (3.10) for certain values of q and k2.

This takes into account the properties ( 2.6 ) of the functions snu, cnu, dnu.
Let us show that a function of the form (3.8) as a solution of equation (1.2) at

τ1 = 0 satisfies equation (1.3) or (4.2) if in it B = 0, i.e.,

α1q
2 + α2 − 4(1 + k2)q2 = 0. (4.3)

This equation is satisfied e.g. if

k2 = −1 and q2 = −α2

α1
and |α2| ̸= |α1|. (4.4)

Then taking into equation (4.2)

θ2 = 4K and θ3 = K ′

and substituting the function

φ0 = −12k2

α3
qsn2ω

when B = 0 in (4.2) due to the equality

snω · sn(ω +K ′) =
1

k′
,

we get

β1 + β2
144k4

α2
3

q2 · 1

k′2
= 0.

Hence we find β1

β1 = −β2
144

α2
3

q2
k4

k′2
. (4.5)

Thus, under condition (4.5) equation (4.2) has a nontrivial dual-periodic solu-
tion of the form

φ0(ω) = −12k2

α3
q2sn2ω

with periods 2K and 2iK ′ if θ2 = 2K and θ3 = iK ′.
The following is true
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Theorem 3.1. Let β1 ̸= u β2 ̸= 0 and k2 ̸= 0, k2 ̸= 1,− be a complex number
modulus function snu and a constant q, |q|| ̸= 1 such that

α1q
2 + α2 − 4(1 + k2)q2 = 0.

Then, under condition (4.5) equation (4.3) has a bi-periodic solution of the form

w0(z) = −12k2

α3
qsn2(z + qz̄).

with periods (3.11)

4. Solving the basic equation (1.1)

Now using the solution of equation (1.2) (Theorem 1) and equation (1.3)
(Theorem 2) we obtain the solutions of (1.1)

Theorem 4.1. Let the complex numbers q, k2 be such that |q| ̸= 1, k2 ̸= 0, k2 ̸= 1
and k2 is the module of the elliptic functions snu cnu dnu and let all the
coefficients of equation (1.1) be different from zero and α3 = α4.

Let the deviations τ1, τ2 be multiples of period h1 and τ3 = h2/2.
Then, if q, k2 satisfy the equation

α1q
2 + α2 + 4(1 + k2)q2 = 0,

and the condition

β1 = −β2
144k4

α2
3

q2 · 1

k′2

or

β1 = −β2
144 · k4

α2
3(1− k2)

q2,

then equation (1.1) has a solution of the form

w(z) =
12k2

α3
qsn2(z + qz̄)

with periods h1, h2- calculated by formula (3.11)
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