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EXACT PERIODIC SOLUTION OF THE
ELECTROMAGNETOELASTICITY PROBLEM FOR A
FERROMAGNETIC AND SEGMENTOELECTRIC
ENVIRONMENT

H.P. SAIDALIEV

ABSTRACT. One of the main tasks in the theory of differential equations and
systems is to obtain exact solutions, which lead to serious calculations. How-
ever, we do not always succeed in finding actual solutions. Our paper con-
siders a system of nonlinear differential equations that describes electromag-
netoelasticity problems for a segmentoelectric and ferromagnetic medium.
Recently, different methods have been developed for solving nonlinear dif-
ferential equations, one of which is the method of decomposition by elliptic
Jacobi functions, which we used to obtain the solution in our paper.

Let’s consider a system of partial differential equations of the form
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where, E, &, u— are not zero constant.
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Substituting (2) into the system of partial differential equations (1) we arrive
at

~d%u 62 0%u
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aiE -2 H87H + ajiH
or — Mot T ar
For the problem (1)-(3) we will look for wave solutions in the form of elliptic
Jacobi functions sn, cn¢ and dn(.
For this purpose, by substituting variables of the form ¢ = k(z — ct) (where k
and ¢ are constant wave numbers) for the functions
For this purpose, by substituting variables of the form ¢ = k(x — ct) (where k
and ¢ constant wave numbers) for functions

3)

E(xvt) :E(C)7 H(‘T,t) :H(C),u(x,t) :u(C)a (4)
we obtain an ordinary system of differential equations in the following form
2 2 ~
20D AT 0, (@= B pe),
i’ dé =0 )
e Cd( ’
dE dH 4, 0" H

The system (5), which provides a solution to the problem (1)-(3), will be
searched for in the form of a traveling wave. For this purpose, we will use the
decomposition method by elliptic Jacobi functions. A similar method was used in
the works [1]-[6].

Thus, we find the periodic solution (5) in the form of finite series,

E = ag + a1snC + assn?C, H = by + bisnC + basn?(, (6)
u = cg + c15nC + cosn3(,
where a, aq, as, bg, b1, b2, co, c1,c2 and co as yet unknown constants.

To calculate derivatives of functions £, H and u we use formulas from elliptic
function theories, i.e.

d d(d
(2720 — encdnc, (dCC) — _sncdnC, (dzC)
and identities sn?¢ +cn?¢ = 1, m?sn?¢ +dn*¢ = 1, with a module m(0 < m < 1).
Hence, using (7), and substituting (6) in the system of ordinary equations (5),
we determine the constant coefficients of (6) after unsupervised transformations.

= —mZenCsnd, (7)

6¢ck?m?d
aO—O al—O as = %, L
bo = ghel- gy — 4K (m? + 1)), by =0, by = Kt ()
co=0,/c;1 =0, ¢ = _ bekim?
0 s /61 — Yy, €2 — w(d—1)"
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Thus, we obtain an exact periodic solution of the problem (1)-(3) by means of sn¢

6ck>m?3d
E_Mg(d 1)877’( 6c2k2m?
H__T#C[cs(d 1) +403k2( 2+1)}+ < #m 877,2(,
U= — 6ck?m? S’I’L2C.
"

at 4 #,0/#0, d+# 1, ¢ # 0, or passing to the initial variations we obtain

E({) = E(k(z —ct)) = bck?m dsn2k(:17 —ct),

1E(@—1)
H(Q) = H(k(@ = ot)) = —gizlzrigy + 4K (m? + D] + S22 snh(a — o),
u(C) = u(k(x — ct)) = GCka sn?k(z — ct),

9)
at u#,0/2#0, d#1, c#0.

So it’s been proven,

Theorem 1. Let all the coefficients of the system of equations (5) be different
from zero except that p #,0/€ # 0, d # 1, ¢ # 0. Then problem (1)-(3) has an
exact periodic solution of the form (9).

Now, using the above method, we will search for the solution of the problem
(1)-(3) using en¢ Jacobi function

{ E = ag+ aren + asen®¢, H = by + bienC + bacn?C,

u = cg + crenC + casn?C. (10)

Substituting (10) using (7) into the ordinary system (5), we determine the
unknown constant coefficients (10)

= = _ _ 6ck’m?*d
ap =0, a; —0 ay = =53 .

=5 3k2 — = — _6cTk"m”
bo = gcl- ca(d oy e Ij (227” D], b1 =0, by = 7 (11)
co=0,c1=0, ca= 6‘:(’; S

which defines to us the following exact bounded solutions with cn¢ Jacobi functions
of the form

— GCk m d
- o 1) ;. C 2,2 2
H = 5y + 4K = )] = S
u = 6ck 2C7

on condition p #,0/¢ ;é 0, d#1, c#0.
Thus, the following theorem is proved

E(() = E(x,t) = — Gck?m?d 2 (k(z — ct)),

pE(d— 1)
H(¢)=H(x,t) = 2;0[ Cg(d N +4c3k2(2m? + 1)) — Sekms ’Zm en?(k(x — ct)),
_ _ 6ck®m? . 2
u() = (e, ) = S on (k(x — o)),

(12)
on condition pu #,0/Z# 0, d # 1, ¢ # 0.
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So, it’s been proven
Theorem 2. Let all the coefficients of the system of equations (5) be different

from zero except that p #,0/ # 0, d # 1, ¢ # 0. Then problem (1)-(3) has an
exact periodic solution of the form (12).

Similarly, we can obtain an exact periodic solution of the problem with the help
of dn¢ Jacobi functions in the following form

E = —8e2m?d g2k (x — ct)),

pe(d—1) -
H = -5l + 4082 (m? = 2)] - S5 dn® (k(z — ct)), (13)
_ _6ck? 2
u= u(a_l)dn (k(z — ct)),

on condition pu #,0/# 0, d # 1, ¢ # 0.

Thus, the following theorem is proved

Theorem 3. Let all coefficients of the system of equations (5) be different from
zero except that i #,0/& # 0, d # 1, ¢ # 0. Then problem (1)-(3) has an ezact
periodic solution of the form (13).

Now, we consider a system of partial differential equations of the form (1) with
governing equations of the form

~ ~ 0
0, =Fe, +eFE,, ¢, = —Z,

D(E,e) =¢E® + ag, € = u,

J(E) = &E:DI$7 (14>
B(H) = pH,

pr -, zx = 0

02 Carz Por =0

-~ - ot T oxr | 0x3’
0P om

or ot

Thus, in the system (15) with the help of replacement of variables for the
function E, H,u types

E(x,t) = E(), H(z,t) =H((),u(z,t) = u((), (16)
where ¢ = k(z — ct), we arrive at k an ordinary system of differential equations

—d*uv _d’E -~
(2? i edied; § (dd Fre
e W O SN XY ) o 17
3 3ce i acd<+ak e =0, (17)
B em™ g
ac ~Hac T

To solve the system (17) we also use the method of expansion by elliptic Jacobi
functions. Thus, investigating by this method we will search for solutions of (17)
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using the elliptic Jacobi function sn¢ in the form of
E =ag+aisnC, H="by+ bysn{,u = cy+ cysnl, (18)

where ag, ay, bg, b1, ¢, c1 as yet unknown constants. Hence supplying (18) in the
system of ordinary equations (17), and after simple transformations we determine
the unknown coefficients (18)

ap =0, ag == i—gkm,

bo =0, by ==+ %’%Z, (19)
_ _ 20 gk
C()—O7 c1 = F ?g%

Hence, we define the exact periodic solution of the system (17) in the form

E =+\/2kmsn¢, H =+,/2ZEmgn(,
5 CE pc
w= /B8,

at
1.6 >0, ¢>0, £>0, d#0, uc#0,
20<0,¢<0, >0, d#0, pc#0,
3.0<0,¢c>0,e<0, d#0, pc+#0,

2 _ E+o¢c2u5 ~192 3
m*+1= ST (ck*ped #0)

or moving on to old changes,

E(x,t) =+ zc—g:kmsn(k(x —ct)), H(z,t)==+ %%’}sn(k(x —ct)), (20)
u(z,t) = :I:\/gg’imsn(k(x —ct)),

d

at
1.6 >0,¢>0, £>0, d#0, pc#0,
20<0,¢c<0,e>0,d#0, pc#0,

35<0,¢>0,5<0, d#0, pc#0, (21)
2 _ d+ac’ug ~12, 3
m*+1= k2 ed ok ucd # 0.

So, it’s been proven

Theorem 4: Let all coefficients (17) cancel from zero, and, conditions (21) are
satisfied. Then the system of equations (15) has an exact periodic solution of the
form (20).

Similarly, we will search for the solution of the system of equations (17) using
en(— Jacobi function

E=ag+aicen, H=>by+bienl,u = cy+ crend, (22)

where too, like everywhere else ag, a1, by, b1, co, c1— as yet unknown constants.

Thus, substituting (22) into the system of ordinary differential equations (17)
and equating the coefficients at the same degrees en( to zero, we define the coef-
ficients of (22) in the form of
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ap =0, a1 == ;?km,
bo =0, by ==+ 7355%’ (23)
Co = 0, clL = F _T?%Tm

Hence, we obtain the following exact periodic solution of the system of equations
(5) with respect to en¢

EF=+ ;%;kjmcn7 H =4+ ;@mcn,
s ¢ 2 e o)

U = Fq/ C;%cng,

on condition _
1.o>0,¢c<0, €>0, Q#O, pue #£ 0,

20<0, c<0, <0, d#0, puc#0,

35>0,¢>0,5<0, d#0, pc#0, (25)
_ 2 E-&-acQuE ~72 3
1-2m? = Ee (ck*ucd # 0).
Or, passing to the initial variations we obtain
E(() = E(z,t) = £/ =2 kmen(k(z — ct)),
H()=H(z,t) ==+ _C—?%cn(k(x — ct)), (26)
u(¢) = u(z,t) = F/ 22 Elen(k(z — ct)),

on condition (25).

So, it’s been proven

Theorem 5: Let all coefficients (17) be different from zero and, in addition,
conditions (25) are satisfied. Then the system of equations (15) has an exact
periodic solution of the form (26).

Similarly, we define the following exact periodic solutions of the problem (1),
(14) and (15) with dn¢— delta amplitude of the Jacobi function, in the form of

E =ap+ aidn(, H="by+ bidn(,u = co + c1dn(. (27)
Following the above steps we define the coefficients (27) in the following form

— — —20
ao—O,al—i cgk,

bo=0, by == _C?ﬁ, (28)
co=0,c1=7F 76%5%6.

Hence, we define the following exact periodic solutions of the problem (1),(14)
and (15)

E(z,t) = E(¢) = £/ =L kdn(k(z — ct)),

H(z,t) = H(¢) = £/ 22 Zdn(k(z — ct)), (29)
uw(z,t) = u(() = Fy/ %?%dn(k(m — ct)).
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Under the following conditions
1log>0,¢<0,e>0,d#0, uc#0,
20<0,¢>0,e>0,d#0, puc+#0,
35>0,¢>0,5<0, d£0, pc#0, (30)

adn m? — 2 = %, (6k%pcd # 0).

d
d

So, the following theorem is proved

Theorem 6. Let all the coefficients of the system of equations (17) be different
from zero, and, in addition, condition (30) is satisfied. Then, problems (1), (14),
and (15) have an exact periodic solution of the form (29).

Remark. When obtaining solutions, we can also use the formula from the theory
of elliptic functions, i.e.

sn?C+enC =1, dn®’C=1—m?sn’C. (31)
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