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Abstract. One of the main tasks in the theory of differential equations and

systems is to obtain exact solutions, which lead to serious calculations. How-

ever, we do not always succeed in finding actual solutions. Our paper con-
siders a system of nonlinear differential equations that describes electromag-

netoelasticity problems for a segmentoelectric and ferromagnetic medium.

Recently, different methods have been developed for solving nonlinear dif-
ferential equations, one of which is the method of decomposition by elliptic

Jacobi functions, which we used to obtain the solution in our paper.

Let’s consider a system of partial differential equations of the form


∂σx

∂x
− ρ

∂2u

∂t2
= f(x, t),

−∂H

∂x
=

∂D(E)

∂t
+ J(E) + Jct,

∂E

∂x
= −∂B(H)

∂t
,

(1)

with the defining equations
σx = Ẽεx + ε̃Ex, εx =

∂u

∂x
,

D(E, ε) = ε̃E + ε, ε = u,

B(H) = −µH2 +
∂2H

∂t2
,

f(x, t) = J(E) = Jct = 0,

(2)

where, Ẽ, ε̃, µ− are not zero constant.
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Substituting (2) into the system of partial differential equations (1) we arrive
at 

Ẽ
∂2u

∂x2
+ ε̃

∂2E

∂t2
− ρ

∂2u

∂t2
= 0,

−∂H

∂x
= Ẽ

∂E

∂t
+

∂u

∂t
,

∂E

∂x
= −2µH

∂H

∂t
+

∂3H

∂t3
.

(3)

For the problem (1)-(3) we will look for wave solutions in the form of elliptic
Jacobi functions snζ, cnζ and dnζ.

For this purpose, by substituting variables of the form ζ = k(x − ct) (where k
and c are constant wave numbers) for the functions

For this purpose, by substituting variables of the form ζ = k(x − ct) (where k
and c constant wave numbers) for functions

E(x, t) = E(ζ), H(x, t) = H(ζ), u(x, t) = u(ζ), (4)

we obtain an ordinary system of differential equations in the following form
ε̃
d2E

dζ2
+ d

d2u

dζ2
= 0, (d = Ẽ − ρc2),

dH

dζ
− cε̃

dE

dζ
− c

du

dζ
= 0,

dE

dζ
+ 2µcH

dH

dζ
− c3k2

d3H

dζ3
= 0.

(5)

The system (5), which provides a solution to the problem (1)-(3), will be
searched for in the form of a traveling wave. For this purpose, we will use the
decomposition method by elliptic Jacobi functions. A similar method was used in
the works [1]-[6].

Thus, we find the periodic solution (5) in the form of finite series,{
E = a0 + a1snζ + a2sn

2ζ, H = b0 + b1snζ + b2sn
2ζ,

u = c0 + c1snζ + c2sn
2ζ,

(6)

where a, a1, a2, b0, b1, b2, c0, c1, c2 and c2 as yet unknown constants.
To calculate derivatives of functions E,H and u we use formulas from elliptic

function theories, i.e.

d(snζ)

dζ
= cnζdnζ,

d(cnζ)

dζ
= −snζdnζ,

d(dnζ)

dζ
= −m2cnζsnζ, (7)

and identities sn2ζ+cn2ζ = 1, m2sn2ζ+dn2ζ = 1, with a module m(0 < m < 1).
Hence, using (7), and substituting (6) in the system of ordinary equations (5),

we determine the constant coefficients of (6) after unsupervised transformations.
a0 = 0, a1 = 0, a2 = 6ck2m2d

µε̃(d−1)
,

b0 = 1
2µc [−

d
cε̃(d−1)

− 4c3k2(m2 + 1)], b1 = 0, b2 = 6c2k2m2

µ

c0 = 0, /c1 = 0, c2 = − 6ck2m2

µ(d−1)
.

(8)
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Thus, we obtain an exact periodic solution of the problem (1)-(3) by means of snζ
E = 6ck2m2d

µε̃(d−1)
sn2ζ,

H = − 1
2µc [

d
cε̃(d−1)

+ 4c3k2(m2 + 1)] + 6c2k2m2

µ sn2ζ,

u = −6ck2m2

µ sn2ζ.

at µ ̸=, 0/ε̃ ̸= 0, d ̸= 1, c ̸= 0, or passing to the initial variations we obtain


E(ζ) = E(k(x− ct)) = 6ck2m2d

µε̃(d−1)
sn2k(x− ct),

H(ζ) = H(k(x− ct)) = − 1
2µc [

d
cε̃(d−1)

+ 4c3k2(m2 + 1)] + 6c2k2m2

µ sn2k(x− ct),

u(ζ) = u(k(x− ct)) = − 6ck2m2

µ sn2k(x− ct),

(9)
at µ ̸=, 0/ε̃ ̸= 0, d ̸= 1, c ̸= 0.

So it’s been proven,
Theorem 1. Let all the coefficients of the system of equations (5) be different

from zero except that µ ̸=, 0/ε̃ ̸= 0, d ̸= 1, c ̸= 0. Then problem (1)-(3) has an
exact periodic solution of the form (9).

Now, using the above method, we will search for the solution of the problem
(1)-(3) using cnζ Jacobi function{

E = a0 + a1cnζ + a2cn
2ζ, H = b0 + b1cnζ + b2cn

2ζ,
u = c0 + c1cnζ + c2sn

2ζ.
(10)

Substituting (10) using (7) into the ordinary system (5), we determine the
unknown constant coefficients (10)

a0 = 0, a1 = 0, a2 = − 6ck2m2d
µε̃(d−1)

,

b0 = 1
2µc [−

d
cε̃(d−1)

+ 4c3k2(2m2 − 1)], b1 = 0, b2 = − 6c2k2m2

µ

c0 = 0, c1 = 0, c2 = 6ck2m2

µ(d−1)
,

(11)

which defines to us the following exact bounded solutions with cnζ Jacobi functions
of the form 

E = − 6ck2m2d
µε̃(d−1)

cn2ζ,

H = 1
2µc [−

d
cε̃(d−1)

+ 4c3k2(2m2 − 1)]− 6c2k2m2

µ cn2ζ,

u = 6ck2m2

µ cn2ζ,

on condition µ ̸=, 0/ε̃ ̸= 0, d ̸= 1, c ̸= 0.
Thus, the following theorem is proved
E(ζ) = E(x, t) = − 6ck2m2d

µε̃(d−1)
cn2(k(x− ct)),

H(ζ) = H(x, t) = 1
2µc [−

d
cε̃(d−1)

+ 4c3k2(2m2 + 1)]− 6c2k2m2

µ cn2(k(x− ct)),

u(ζ) = u(x, t) = 6ck2m2

µ(d−1)
cn2(k(x− ct)),

(12)
on condition µ ̸=, 0/ε̃ ̸= 0, d ̸= 1, c ̸= 0.
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So, it’s been proven
Theorem 2. Let all the coefficients of the system of equations (5) be different

from zero except that µ ̸=, 0/ε̃ ̸= 0, d ̸= 1, c ̸= 0. Then problem (1)-(3) has an
exact periodic solution of the form (12).

Similarly, we can obtain an exact periodic solution of the problem with the help
of dnζ Jacobi functions in the following form

E = − 6ck2m2d
µε̃(d−1)

dn2(k(x− ct)),

H = − 1
2µc [

d
cε̃(d−1)

+ 4c3k2(m2 − 2)]− 6c2k2

µ dn2(k(x− ct)),

u = 6ck2

µ(d−1)
dn2(k(x− ct)),

(13)

on condition µ ̸=, 0/ε̃ ̸= 0, d ̸= 1, c ̸= 0.
Thus, the following theorem is proved
Theorem 3. Let all coefficients of the system of equations (5) be different from

zero except that µ ̸=, 0/ε̃ ̸= 0, d ̸= 1, c ̸= 0. Then problem (1)-(3) has an exact
periodic solution of the form (13).

Now, we consider a system of partial differential equations of the form (1) with
governing equations of the form

σx = Ẽεx + ε̃Ex, εx =
∂u

∂x
,

D(E, ε) = ε̃E3 + αε, ε = u,
J(E) = σ̃Exxx,
B(H) = µH,

f(x, t) = Jct = 0, Ẽ, ε̃, σ̃, µ, α− const.

(14)

Using (14) from (1) we obtain
Ẽ
∂2u

∂x2
+ ε̃

∂2E

∂x2
− ρ

∂2u

∂t2
= 0,

−∂H

∂x
= 3ε̃E2 ∂E

∂t
+ α

∂u

∂x
+ ε̃

∂3E

∂x3
,

∂E

∂x
= −µ

∂H

∂t
.

(15)

Thus, in the system (15) with the help of replacement of variables for the
function E,H, u types

E(x, t) = E(ζ), H(x, t) = H(ζ), u(x, t) = u(ζ), (16)

where ζ = k(x− ct), we arrive at k an ordinary system of differential equations
d
d2u

dζ2
+ ε

d2E

dζ2
= 0, (d = Ẽ − ρc2),

dH

∂ζ
− 3cε̃E2 dE

dζ
− αc

du

dζ
+ σ̃k2 d3E

dζ3 = 0,

dE

dζ
− µcH

dH

dζ
= 0.

(17)

To solve the system (17) we also use the method of expansion by elliptic Jacobi
functions. Thus, investigating by this method we will search for solutions of (17)
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using the elliptic Jacobi function snζ in the form of

E = a0 + a1snζ, H = b0 + b1snζ, u = c0 + c1snζ, (18)

where a0, a1, b0, b1, c0, c1 as yet unknown constants. Hence supplying (18) in the
system of ordinary equations (17), and after simple transformations we determine
the unknown coefficients (18)

a0 = 0, a1 = ±
√

2σ̃
cε̃ km,

b0 = 0, b1 = ±
√

2σ̃
cε̃

km
µc ,

c0 = 0, c1 = ∓
√

2σ̃
cε̃

ε̃km
d

.

(19)

Hence, we define the exact periodic solution of the system (17) in the form E = ±
√

2σ̃
cε̃ kmsnζ, H = ±

√
2σ̃
cε̃

km
µc snζ,

u = ∓
√

2σ̃
cε̃

ε̃km
d

snζ,

at 
1.σ̃ > 0, c > 0, ε̃ > 0, d ̸= 0, µc ̸= 0,

2.σ̃ < 0, c < 0, ε̃ > 0, d ̸= 0, µc ̸= 0,

3.σ̃ < 0, c > 0, ε̃ < 0, d ̸= 0, µc ̸= 0,

m2 + 1 = d+αc2µε̃

σ̃k2µcd
, (σ̃k2µcd ̸= 0)

or moving on to old changes, E(x, t) = ±
√

2σ̃
cε̃ kmsn(k(x− ct)), H(x, t) = ±

√
2σ̃
cε̃

km
µc sn(k(x− ct)),

u(x, t) = ±
√

2σ̃
cε̃

ε̃km
d

sn(k(x− ct)),
(20)

at 
1.σ̃ > 0, c > 0, ε̃ > 0, d ̸= 0, µc ̸= 0,

2.σ̃ < 0, c < 0, ε̃ > 0, d ̸= 0, µc ̸= 0,

3.σ̃ < 0, c > 0, ε̃ < 0, d ̸= 0, µc ̸= 0,

m2 + 1 = d+αc2µε̃

σ̃k2µcd
, σ̃k2µcd ̸= 0.

(21)

So, it’s been proven
Theorem 4: Let all coefficients (17) cancel from zero, and, conditions (21) are

satisfied. Then the system of equations (15) has an exact periodic solution of the
form (20).

Similarly, we will search for the solution of the system of equations (17) using
cnζ− Jacobi function

E = a0 + a1cnζ, H = b0 + b1cnζ, u = c0 + c1cnζ, (22)

where too, like everywhere else a0, a1, b0, b1, c0, c1− as yet unknown constants.
Thus, substituting (22) into the system of ordinary differential equations (17)

and equating the coefficients at the same degrees cnζ to zero, we define the coef-
ficients of (22) in the form of
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
a0 = 0, a1 = ±

√
−2σ̃
cε̃ km,

b0 = 0, b1 = ±
√

−2σ̃
cε̃

km
µc ,

c0 = 0, c1 = ∓
√

−2σ̃
cε̃

ε̃km
d

.

(23)

Hence, we obtain the following exact periodic solution of the system of equations
(5) with respect to cnζ E = ±

√
−2σ̃
cε̃ kmcnζ, H = ±

√
−2σ̃
cε̃

km
µc cnζ,

u = ∓
√

−2σ̃
cε̃

ε̃km
d

cnζ,
(24)

on condition 
1.σ̃ > 0, c < 0, ε̃ > 0, d ̸= 0, µc ̸= 0,

2.σ̃ < 0, c < 0, ε̃ < 0, d ̸= 0, µc ̸= 0,

3.σ̃ > 0, c > 0, ε̃ < 0, d ̸= 0, µc ̸= 0,

1− 2m2 = d+αc2µε̃

σ̃k2µcd
, (σ̃k2µcd ̸= 0).

(25)

Or, passing to the initial variations we obtain
E(ζ) = E(x, t) = ±

√
−2σ̃
cε̃ kmcn(k(x− ct)),

H(ζ) = H(x, t) = ±
√

−2σ̃
cε̃

km
µc cn(k(x− ct)),

u(ζ) = u(x, t) = ∓
√

−2σ̃
cε̃

ε̃km
d

cn(k(x− ct)),

(26)

on condition (25).
So, it’s been proven
Theorem 5: Let all coefficients (17) be different from zero and, in addition,

conditions (25) are satisfied. Then the system of equations (15) has an exact
periodic solution of the form (26).

Similarly, we define the following exact periodic solutions of the problem (1),
(14) and (15) with dnζ− delta amplitude of the Jacobi function, in the form of

E = a0 + a1dnζ, H = b0 + b1dnζ, u = c0 + c1dnζ. (27)

Following the above steps we define the coefficients (27) in the following form
a0 = 0, a1 = ±

√
−2σ̃
cε̃ k,

b0 = 0, b1 = ±
√

−2σ̃
cε̃

k
µc ,

c0 = 0, c1 = ∓
√

−2σ̃
cε̃

ε̃k
d
.

(28)

Hence, we define the following exact periodic solutions of the problem (1),(14)
and (15) 

E(x, t) = E(ζ) = ±
√

−2σ̃
cε̃ kdn(k(x− ct)),

H(x, t) = H(ζ) = ±
√

−2σ̃
cε̃

k
µcdn(k(x− ct)),

u(x, t) = u(ζ) = ∓
√

−2σ̃
cε̃

ε̃k
d
dn(k(x− ct)).

(29)
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Under the following conditions
1.σ̃ > 0, c < 0, ε̃ > 0, d ̸= 0, µc ̸= 0,

2.σ̃ < 0, c > 0, ε̃ > 0, d ̸= 0, µc ̸= 0,

3.σ̃ > 0, c > 0, ε̃ < 0, d ̸= 0, µc ̸= 0,

adn m2 − 2 = d+αc2µε̃

σ̃k2µcd
, (σ̃k2µcd ̸= 0).

(30)

So, the following theorem is proved
Theorem 6. Let all the coefficients of the system of equations (17) be different

from zero, and, in addition, condition (30) is satisfied. Then, problems (1), (14),
and (15) have an exact periodic solution of the form (29).

Remark. When obtaining solutions, we can also use the formula from the theory
of elliptic functions, i.e.

sn2ζ + cn2ζ = 1, dn2ζ = 1−m2sn2ζ. (31)
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